Table of Contents

Schedule of Events ... 5
General Information .. 8
Exhibits ... 13
Plenary, Parallel and Workshop Session Listings .. 15
Poster Session Listings ... 38
Speaker and Author index ... 85
Sponsor ads ... 116

Thank you to our Gold Sponsors!

Newormics

The Company of Biologists

NIH
National Institute on Aging

About the background cover art
Transgenic Caenorhabditis elegans expressing a vav-1 mCherry transcriptional reporter in a live animal. vav-1 is expressed in pharyngeal tissue, a small subset of neurons, including ALA, spermatheca, vulva and rectal epithelia. VAV-1 acts in the ALA neuron to promote sleep-like behavior. See Fry et al. GENETICS March 1, 2016 vol. 202 no. 3 1153-1166. Image courtesy of Amanda Fry and Ken Norman.
Genetics Society of America

The Genetics Society of America (GSA) is an international scientific society representing more than 5,500 researchers and educators around the world.

We work to advance the field and foster the research community. The Society has a deep commitment to supporting the next generation of geneticists, providing professional development opportunities, training, travel grants, and more. We work with our members and partner organizations to communicate the value of genetics and fundamental research to the public and policymakers; we advocate for our scientific community and the vital work they do.

As well as encouraging communication among researchers through conferences, GSA publishes two peer-edited scholarly journals:

GENETICS has been innovating since 1916, publishing high quality original research across the breadth of the field.

G3: Genes|Genomes|Genetics is an open access journal that publishes high quality, useful results regardless of perceived impact.

2019 GSA Board of Directors

Officers
- Terry R. Magnuson, President
- Denise J. Montell, Vice-President
- Jeannie T. Lee, Immediate Past President
- Erika L. Matunis, Secretary
- Piali Sengupta, Treasurer

Directors
- Swathi Arur
- Jef D. Boeke
- Kirsten Bomblies
- Rebecca Burdine
- Cassandra Extavour
- Pamela K. Geyer
- Mary Lou Guerinot
- Matthew W. Hahn
- Hopi E. Hoekstra

Journal Editors
- Brenda J. Andrews, Editor in Chief, **G3: Genes|Genomes|Genetics**
- Mark Johnston, Editor in Chief, **GENETICS**

Early Career Director
- Jordan D. Ward

Trainee Advisory Representative
- Didem P. Sarikaya
International C. elegans Board 2019

Officers
- Julie Ahringer (Gurdon Institute and Cambridge University)
- Andrew Chisholm (UC San Diego and Wellcome Trust)
- Anne Hart (Brown University)
- Oliver Hobert (Columbia University)

Regional Representatives

<table>
<thead>
<tr>
<th>Representative</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jane Hubbard (New York University)</td>
<td>US/East</td>
</tr>
<tr>
<td>David Greenstein (University of Minnesota)</td>
<td>US/Central/South</td>
</tr>
<tr>
<td>Miriam Goodman (Stanford University)</td>
<td>US/West</td>
</tr>
<tr>
<td>Brent Derry (The Hospital for Sick Children, Toronto)</td>
<td>Canada and Americas</td>
</tr>
<tr>
<td>Peter Meister (Universität Bern)</td>
<td>Europe</td>
</tr>
<tr>
<td>Ralf Sommer (Max Planck Institute for Developmental Biology, Tübingen)</td>
<td></td>
</tr>
<tr>
<td>Asako Sugimoto (Tohoku University)</td>
<td>Asian/Australasia/Oceania</td>
</tr>
<tr>
<td>Hong Zhang (Chinese Academy of Sciences, Beijing)</td>
<td></td>
</tr>
</tbody>
</table>

Predominantly Undergraduate Institutions
- Te-wen Lo (Ithaca College)

Ex-officio (non voting) Members

<table>
<thead>
<tr>
<th>Representative</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anne Villeneuve (Stanford University)</td>
<td>GSA Liaison</td>
</tr>
<tr>
<td>Paul Sternberg (California Institute of Technology)</td>
<td>PI of WormBase Consortium</td>
</tr>
<tr>
<td>Ann Rougvie (University of Minnesota)</td>
<td>Director of the CGC</td>
</tr>
<tr>
<td>Tim Schedl (Washington University School of Medicine)</td>
<td>C. elegans nomenclature Coordinator</td>
</tr>
<tr>
<td>Iva Greenwald (Columbia University)</td>
<td>WormBook Editor-in-Chief</td>
</tr>
<tr>
<td>Don Moerman (University of British Columbia)</td>
<td>Pls of the gene knockout consortia</td>
</tr>
<tr>
<td>Shohei Mitani (Tokyo Women’s Medical University)</td>
<td></td>
</tr>
<tr>
<td>Mark Blaxter (University of Edinburgh)</td>
<td>PI of nematode genome projects</td>
</tr>
<tr>
<td>Julie Ahringer (Gurdon Institute and Cambridge University)</td>
<td>Current and most recent</td>
</tr>
<tr>
<td>Michael Koelle (Yale University)</td>
<td>International C. elegans Conference organizers</td>
</tr>
<tr>
<td>Andrew Chisholm (University of CA, San Diego and Wellcome Trust)</td>
<td></td>
</tr>
<tr>
<td>Marie-Anne Félix (Institut de Biologie de l'École Normale Supérieure, Paris)</td>
<td></td>
</tr>
</tbody>
</table>
22nd International *C. elegans* Conference Organizers and Program Committee

Julie Ahringer
Gurdon Institute and Cambridge University, Cambridge, UK, Organizer

Michael Koelle
Yale University, New Haven, USA, Organizer

Zhirong Bao
Sloan Kettering Institute, New York, USA

Mike Boxem
Utrecht University, Utrecht, Netherlands

Andrew Chisholm
University of California, San Diego, USA

Julie Claycomb
University of Toronto, Toronto, Canada

Daniel A. Colón-Ramos
Yale University, New Haven, USA

Monica Driscoll
Rutgers University, Piscataway, USA

Collin Ewald
ETH Zurich, Zurich, Switzerland

Marie-Anne Félix
École Normale Supérieure, Paris, France

Alexander Gottschalk
Goethe University, Frankfurt, Germany

Malene Hansen
Sanford Burnham Prebys Medical Discovery Institute, La Jolla, USA

E. Jane Albert Hubbard
Skirball Inst, New York University School of Medicine, New York, USA

Karin Kiontke
New York University, New York, USA

Junho Lee
Seoul National University, Seoul, South Korea

Siu Sylvia Lee
Cornell University, Ithaca, USA

Ben Lehner
Centre for Genomic Regulation, Barcelona, Spain

Andrew Leifer
Princeton University, Princeton, USA

Dengke Ma
University of California, San Francisco, USA

Eric Miska
Gurdon Institute and Cambridge University, Cambridge, UK

Alicia Melendez
Queens College, Queens, USA

Fumio Motegi
National University of Singapore, Singapore

Coleen Murphy
Princeton University, Princeton, USA

Sara Olson
Pomona College, Claremont USA

Meital Oren-Suissa
Weizmann Institute of Science, Rehovot, Israel

Patrick Phillips
University of Oregon, Eugene, USA

Bill Schafer
Medical Research Council Lab of Molecular Biology, Cambridge, UK

Susan Strome
University of California, Santa Cruz, USA

Nektarios Tavernarakis
Institute of Molecular Biology and Biotechnology, Crete, Greece

Baris Tursun
Max Delbrück Center, Berlin, Germany

Alison Woollard
Oxford University, Oxford, UK

Judith Yanowitz
University of Pittsburgh School of Medicine, Pittsburgh, USA
Thursday, June 20

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:00 p.m.</td>
<td>Teaching Workshop</td>
<td>Grand Horizon Ballroom</td>
</tr>
<tr>
<td>2:00 p.m.</td>
<td>GENETICS Peer Review Training Workshop</td>
<td>West Coast Room</td>
</tr>
<tr>
<td>1:00 p.m.</td>
<td>Registration</td>
<td>Sunset Village Plaza</td>
</tr>
<tr>
<td>2:00 p.m.</td>
<td>Family/Nursing Mothers Room</td>
<td>Sunset Village, Room L04</td>
</tr>
<tr>
<td>2:30 p.m.</td>
<td>4th Parasitic Nematodes: Bridging the Divide Workshop</td>
<td>Northwest Auditorium</td>
</tr>
<tr>
<td>6:30 p.m.</td>
<td>Family/Nursing Mothers Room</td>
<td>Royce Hall, Green Room</td>
</tr>
<tr>
<td>7:00 p.m.</td>
<td>Conference Welcome and Tribute to Sydney Brenner and John Sulston</td>
<td>Royce Hall</td>
</tr>
<tr>
<td>7:15 p.m.</td>
<td>Plenary Session 1</td>
<td>Royce Hall</td>
</tr>
<tr>
<td>10:00 p.m.</td>
<td>Opening Mixer</td>
<td>Royce Quad</td>
</tr>
</tbody>
</table>

Friday, June 21

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00 a.m.</td>
<td>Registration</td>
<td>Covel Commons</td>
</tr>
<tr>
<td>8:30 a.m.</td>
<td>CONCURRENT SESSIONS 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Germline: Meiosis and Development</td>
<td>Grand Horizon Ballroom</td>
</tr>
<tr>
<td></td>
<td>Aging and Longevity</td>
<td>DeNeve Auditorium</td>
</tr>
<tr>
<td></td>
<td>Neurobiology: Synapses and Circuits</td>
<td>Palisades Ballroom</td>
</tr>
<tr>
<td></td>
<td>Pathogenesis, Ecology, and Evolution</td>
<td>Northwest Auditorium</td>
</tr>
<tr>
<td>24 hours</td>
<td>Family/Nursing Mothers Room</td>
<td>Sunset Village, Room L04</td>
</tr>
<tr>
<td>1:00 p.m.</td>
<td>WORKSHOPS 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CRISPR: New Techniques and Best Practices</td>
<td>Palisades Ballroom</td>
</tr>
<tr>
<td></td>
<td>Microfluidics and Customized Experimental Platforms</td>
<td>DeNeve Auditorium</td>
</tr>
<tr>
<td></td>
<td>Glia: Exciting Discoveries and New Approaches</td>
<td>Northwest Auditorium</td>
</tr>
<tr>
<td></td>
<td>Career Success: Strategies to Develop Visibility When You Prefer to be a Wallflower</td>
<td>Grand Horizon Ballroom</td>
</tr>
<tr>
<td>2:30 p.m.</td>
<td>Family/Nursing Mothers Room</td>
<td>Royce Hall, Green Room</td>
</tr>
<tr>
<td>2:30 p.m.</td>
<td>"A" Authors may display posters after 2:30 pm. and posters must be removed at 10:30 p.m.</td>
<td>Pauley Pavilion</td>
</tr>
<tr>
<td>3:00 p.m.</td>
<td>Plenary Session 2</td>
<td>Royce Hall</td>
</tr>
<tr>
<td>5:00 p.m.</td>
<td>GSA Medal Presentation to Anne Villeneuve</td>
<td>Royce Hall</td>
</tr>
<tr>
<td>7:30 p.m.</td>
<td>Poster Session 1/Exhibits/Art Show</td>
<td>Pauley Pavilion</td>
</tr>
</tbody>
</table>
Saturday, June 22

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 hours</td>
<td>Family/Nursing Mothers Room</td>
<td>Sunset Village, Room L04</td>
</tr>
<tr>
<td>7:30 a.m. - 8:30 a.m.</td>
<td>microPublication Biology: How to Publish your Single Experimental Findings</td>
<td>DeNeve Private Dining Room</td>
</tr>
<tr>
<td>8:30 a.m. - 4:00 p.m.</td>
<td>Registration</td>
<td>Covel Commons</td>
</tr>
<tr>
<td>8:30 a.m. - 11:30 a.m.</td>
<td>CONCURRENT SESSIONS II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RNA Interference and Noncoding RNAs</td>
<td>Northwest Auditorium</td>
</tr>
<tr>
<td></td>
<td>Stress</td>
<td>DeNeve Auditorium</td>
</tr>
<tr>
<td></td>
<td>Neurobiology: Sensory Responses and Novel Methods</td>
<td>Palisades Ballroom</td>
</tr>
<tr>
<td></td>
<td>Development: Cell Signaling, Fate, and Patterning</td>
<td>Grand Horizon Ballroom</td>
</tr>
<tr>
<td>11:00 a.m. - 7:30 p.m.</td>
<td>"B" Authors may display posters after 11:00 a.m. and posters must be removed by 10:30 p.m.</td>
<td>Pauley Pavilion</td>
</tr>
<tr>
<td>1:00 p.m. - 2:30 p.m.</td>
<td>WORKSHOPS II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Small Things Considered: 2nd C. elegans Workshop on the Microbiome</td>
<td>DeNeve Plaza Room</td>
</tr>
<tr>
<td></td>
<td>Wormbase 2019: Data, Tools, and Community Curation</td>
<td>Northwest Auditorium</td>
</tr>
<tr>
<td></td>
<td>Real-Time Biochemistry and Biophysics in Live Worms</td>
<td>Grand Horizon Ballroom</td>
</tr>
<tr>
<td></td>
<td>Assay Development for Human Disease Models in C. elegans</td>
<td>Palisades Ballroom</td>
</tr>
<tr>
<td></td>
<td>Food on the Mind: Sensory Detection of Food and Integrative Feeding Behaviors in C. elegans</td>
<td>DeNeve Auditorium</td>
</tr>
<tr>
<td></td>
<td>GSA Publishing Q&A</td>
<td>Covel Study Lounge</td>
</tr>
<tr>
<td>2:30 p.m. - 6:30 p.m.</td>
<td>Family/Nursing Mothers Room</td>
<td>Royce Hall, Green Room</td>
</tr>
<tr>
<td>3:00 p.m. - 4:30 p.m.</td>
<td>Plenary Session 3</td>
<td>Royce Hall</td>
</tr>
<tr>
<td>5:00 p.m. - 6:00 p.m.</td>
<td>Keynote Address: Cori Bargmann, Rockefeller University</td>
<td>Royce Hall</td>
</tr>
<tr>
<td>7:30 p.m. - 10:30 p.m.</td>
<td>Poster Session 2/Exhibits/Art Show</td>
<td>Pauley Pavilion</td>
</tr>
<tr>
<td>Time</td>
<td>Event Description</td>
<td>Location</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>7:30 a.m. - 8:30 a.m.</td>
<td>Worm Board Meeting (private event)</td>
<td>Sproul Private Dining Room</td>
</tr>
<tr>
<td>8:30 a.m. - 2:00 p.m.</td>
<td>Registration</td>
<td>Covel Commons</td>
</tr>
<tr>
<td>8:30 a.m. - 11:30 a.m.</td>
<td>CONCURRENT SESSIONS III</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gene Regulation and Genomics</td>
<td>Grand Horizon Ballroom</td>
</tr>
<tr>
<td></td>
<td>Metabolism and Dauer</td>
<td>DeNeve Auditorium</td>
</tr>
<tr>
<td></td>
<td>Neuronal Development, Degeneration and Regeneration</td>
<td>Palisades Ballroom</td>
</tr>
<tr>
<td></td>
<td>Cell Biology</td>
<td>Northwest Auditorium</td>
</tr>
<tr>
<td>11:00 a.m. - 3:00 p.m.</td>
<td>“C“Authors must display posters after 11:00 a.m. and posters must be removed at 6:00 p.m.</td>
<td>Pauley Pavilion</td>
</tr>
<tr>
<td>1:00 p.m. - 2:30 p.m.</td>
<td>WORKSHOPS III</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Teaching Workshop: Providing a Broader Research Experience by Collaborating Across Independent CURE Courses</td>
<td>DeNeve Auditorium</td>
</tr>
<tr>
<td></td>
<td>New Tools for Conditional Expression or Degradation</td>
<td>Palisades Ballroom</td>
</tr>
<tr>
<td></td>
<td>Whole-Brain Imaging Workshop</td>
<td>Grand Horizon Ballroom</td>
</tr>
<tr>
<td></td>
<td>Bridging the Physiologic Gap: Using C. elegans to Improve Human Skeletal Muscle Health</td>
<td>Northwest Auditorium</td>
</tr>
<tr>
<td>3:00 p.m. - 6:00 p.m.</td>
<td>Poster Session 3/Exhibits/Art Show</td>
<td>Pauley Pavilion</td>
</tr>
<tr>
<td>6:00 p.m. - 7:30 p.m.</td>
<td>Conference Dinner</td>
<td>Wilson Plaza Quad</td>
</tr>
<tr>
<td>7:00 p.m. - 8:30 p.m.</td>
<td>Family/Nursing Mothers Room</td>
<td>Royce, Green Room</td>
</tr>
<tr>
<td>7:30 p.m. - 8:45 p.m.</td>
<td>Worm Art Show Awards, GSA Poster Awards and Worm Variety Show</td>
<td>Royce Hall</td>
</tr>
<tr>
<td>8:45 p.m. - 11:30 p.m.</td>
<td>Conference Party</td>
<td>Wilson Plaza Quad</td>
</tr>
</tbody>
</table>

Monday, June 24

<table>
<thead>
<tr>
<th>Time</th>
<th>Event Description</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:30 a.m. - 12:00 p.m.</td>
<td>Family/Nursing Mothers Room</td>
<td>Royce, Green Room</td>
</tr>
<tr>
<td>9:00 a.m. - 11:53 a.m.</td>
<td>Plenary Session 4</td>
<td>Royce Hall</td>
</tr>
<tr>
<td>12:00 a.m. - 11:30 a.m.</td>
<td>Family/Nursing Mothers Room</td>
<td>Sunset Village, Room L04</td>
</tr>
</tbody>
</table>
Mobile App
Download the GSA Meetings app to your smartphone (available on both iOS and Android platforms) to have meeting information at your fingertips. Once you download the app, you will only need access to the internet to download updates. You will not need an internet connection to access previously downloaded information. Blackberry users and Windows Mobile Device users will have full access to the Program through the web version available on the conference website. One of the most helpful features is the pin drop, which will locate a session room, posterboard, or exhibitor.

Oral Presentations
Please arrive 45 minutes before the start of your session to load your presentation on the conference computer. Label your presentation with your presentation number and last name, i.e. 27 Smith. Plenary speakers must send their presentation to kevqpong@arts.ucla.edu 24 hours before their presentation.

Poster Presentations
All three poster sessions will be in Pauley Pavilion. Two posters will share a 4’ high x 8’ wide poster board. Each author will have a net usable space of 3’ 10” (111.8cm) high x 3’ 10” (111.8cm) wide. Push pins will be available at the main entrance to the poster session.

Authors will present their posters according to the schedule below. All posters will be up for one day. Presenters should remove their posters at the end of the poster session. After that time, posters may be lost or thrown away. The meeting does not take responsibility for posters that are not removed on time. Posters must be removed at 6:00 p.m. on Sunday, June 23 at which time all boards will be removed.

Presentation schedule:

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Posters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, June 21</td>
<td>All A posters must be put up between 2:30 pm -7:30 pm</td>
<td>7:30 p.m. – 8:30 p.m. Even numbered A Posters</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8:30 p.m. – 9:30 p.m. Odd numbered A posters</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9:30 p.m. – 10:30 p.m. Open Viewing</td>
</tr>
<tr>
<td>Saturday, June 22</td>
<td>All B posters must be put up between 11:00 am -7:30 pm</td>
<td>7:30 p.m. – 8:30 p.m. Even numbered B posters</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8:30 p.m. – 9:30 p.m. Odd numbered B posters</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9:30 p.m. – 10:30 p.m. Open Viewing</td>
</tr>
<tr>
<td>Sunday, June 23</td>
<td>All C posters must be put up between 11:00 am -3:00 pm</td>
<td>3:00 p.m. – 4:00 p.m. Even numbered C posters</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4:00 p.m. – 5:00 p.m. Odd numbered C posters</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5:00 p.m. – 6:00 p.m. Open Viewing</td>
</tr>
</tbody>
</table>
Social Media/Photo/Video Policy
You may live tweet (#Worm19) presentations unless the speaker explicitly opts out by stating so at the start of their talk. You may only take or share photos or videos of posters with the presenter’s consent during the assigned poster session. **Taking photos of posters while the presenter is not present is strictly prohibited.**

Please be respectful of your colleagues by turning off or muting all mobile devices before entering meeting rooms.

Registration and Information Desk
Pick up registration materials and Certificates of Attendance at the registration desk. The conference registration desk will be open according to the following schedule:

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thursday, June 20</td>
<td>1:00 p.m. – 8:30 p.m.</td>
<td>Sunset Village Plaza</td>
</tr>
<tr>
<td>Friday, June 21</td>
<td>8:00 a.m. – 4:00 p.m.</td>
<td>Covel Commons</td>
</tr>
<tr>
<td>Saturday, June 22</td>
<td>8:00 a.m. – 4:00 p.m.</td>
<td>Covel Commons</td>
</tr>
<tr>
<td>Sunday, June 23</td>
<td>8:30 a.m. – 2:00 p.m.</td>
<td>Covel Commons</td>
</tr>
</tbody>
</table>

Badges
For admission to all sessions, posters, exhibit hall, and receptions you must have an official conference badge. If you lose your badge, a duplicate can be printed at the Conference Registration Desk.

Meeting Announcements/Job Notices
Individuals and institutions offering or seeking employment may post notices and resumes on the “Employment Notices” bulletin boards in Pauley Pavilion. Organizers of meetings that may interest *C. elegans* researchers may also post announcements on the boards.

Cafeteria Hours of Operation
Two cafeterias are available for meals. Be sure to take advantage of both locations. In addition, Café 1919 will be available for breakfast and lunch Monday through Friday. Registrants staying off campus can purchase individual meal tickets at the front desks in Sproul or DeNeve Hall.

Sproul and DeNeve Hall Cafeteria Hours of Operation

<table>
<thead>
<tr>
<th>Meal</th>
<th>Hours of Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breakfast</td>
<td>7:00 a.m. – 9:00 a.m.</td>
</tr>
<tr>
<td>Lunch</td>
<td>11:00 a.m. – 1:00 p.m.</td>
</tr>
<tr>
<td>Dinner</td>
<td>5:00 p.m. – 8:00 p.m.</td>
</tr>
</tbody>
</table>
Internet Access
UCLA provides a complimentary computer lab in the Covel Business Center (located in Covel Commons lobby) for guests to check their e-mails. The hours are:

- Thursday, June 20: 7:30 a.m. – 8:00 p.m.
- Friday, June 21: 7:30 a.m. – 6:00 p.m.
- Saturday, June 22: 9:00 a.m. – 6:00 p.m.
- Sunday, June 23: 12:00 noon – 5:00 p.m.
- Monday, June 24: 7:30 a.m. – 8:00 p.m.

Attendees staying on campus can access the Internet on their computers via the Ethernet port in their sleeping rooms or the complimentary Wi-Fi.

Poster Competition
Poster prizes will be awarded to graduate students. Judges attempt to visit each poster when the authors are scheduled to present. The competition is open to GSA graduate student members that are the first and presenting author on the poster. Authors indicated at the time of their abstract submission whether they wanted to be considered for the competition. GSA postdoc and regular members serve as the judges. Winners will be announced at the Sunday plenary session.

C. elegans Art Show
The C. elegans Art Show will be in Pauley Pavilion throughout the poster viewing time. Prizes will be awarded Sunday, June 23 in Royce Hall. Don’t miss the amazing worm art designed by your colleagues!

Recreational Facilities
Campus recreation facilities are available for meeting attendees who are staying on campus. The meal/access card, provided with each room key at check-in, allows admission to all the recreation facilities. The John Wooden Center and Sunset Canyon Recreational Center include swimming pools, weight rooms, tennis courts, racquetball courts, and handball courts. Attendees not staying on campus may use the facilities by paying an additional fee.

Smoking
UCLA is a tobacco free campus. The use of tobacco is prohibited on all university property.

Check out time
Registrants must check out of their UCLA housing by 11:00 am Monday, June 24.

Security/Lost and Found
For all emergencies and lost and found items contact Campus security by dialing 0 from any house phone. The conference registration desk will be able to assist you as well.
Childcare/Family Rooms
The Family Rooms for nursing mothers are located in Sunset Village room L04 and during the plenary sessions the Green Room in Royce Hall will be available. Please note that parents and guardians are responsible for providing infant care supplies. The Family Room is not supervised and the Genetics Society of America is not responsible for any accidents or injuries that may occur.

Visit Care.com for help locating a babysitter. Please note that GSA has no affiliation with their services. The parent(s), guardian, legal guardian, or individual requesting childcare services is responsible for screening caregivers and determining whether caregivers are appropriate. The Genetics Society of America does not screen any of the childcare services and assumes no responsibility with respect to these services and accepts no liabilities.

Code of Conduct
The Genetics Society of America Conferences foster an international community of geneticists and provide an opportunity to discuss scientific advances and form new collaborations.

GSA values your attendance and wants to make your experience productive and inspiring by fostering an open exchange of ideas in a professional setting. Our Code of Conduct was established to communicate a transparent set of standards and guidelines for acceptable behavior at GSA Conferences and to provide a positive, safe, and welcoming environment for all attendees, vendors, volunteers, and staff.

All conference participants (regardless of their role) are expected to follow the Code of Conduct while attending any portion of the meeting, including but not limited to meeting rooms, the exhibit/poster hall, meeting areas in the official conference venue, and social events provided by the meeting or vendors.

Unacceptable Behaviors
Unacceptable behaviors include, but are not limited to:

- Intimidating, harassing, abusive, discriminatory, derogatory, or demeaning speech or actions by any participant and at all related events
- Harmful or prejudicial verbal or written comments or visual images related to gender, gender expression, gender identity, marital status, sexual orientation, race, religion, political orientation, socioeconomic, disability or ability status, or other personal characteristics, including those protected by law
- Inappropriate use of nudity and/or sexual images in public spaces (including presentation slides and posters)
- Deliberate intimidation, stalking, or following
- Violating the rules and regulations of the conference hotel
- Sustained disruption of scientific sessions or other events
- Unwelcome and uninvited attention or contact
- Physical assault (including unwelcome touching or groping)
- Real or implied threat of physical harm
• Real or implied threat of professional or financial damage or harm
• Harassing or unwanted photography
• Photographing slides of oral presentations and posters without permission
• Recording of scientific and other sessions without permission

Taking action or making a report

• If you feel threatened, witness someone being threatened, or observe behavior that presents an immediate or serious threat to public safety, please contact venue staff/security or call 911 immediately.
• GSA staff is available to assist participants in contacting hotel/university security or local law enforcement, and otherwise assist those experiencing harassment.
• If you see someone taking photographs or videos of a presentation or poster (where permission has not been granted), you may choose to remind them of the Code of Conduct policy and ask them to stop photographing the presentation or poster.
• You may also report unauthorized photography to GSA Staff.
• Need to file a complaint? Please contact any member of GSA Staff (indicated by red ribbon on their badge) or email Tracey DePellegrin at tracey.depellegrin@genetics-gsa.org. All reports will be handled confidentially.

Consequences of non-compliance

Anyone asked by GSA, the venue or security staff, or law enforcement officers to stop unacceptable behavior is expected to comply immediately. Retaliation toward GSA or toward someone reporting an incident or after experiencing any of the following consequences will not be tolerated and may result in additional sanctions.

The consequences of non-compliance with GSA’s Code of Conduct may include:

• Immediate removal from the meeting without warning or refund
• Restrictions from future GSA meeting attendance
• Termination of GSA membership or positions on GSA Boards or Committees
• Incidents may be reported to the proper authority
EMbody Biosignals Ltd.
44 7999299126
c.james@embody-biosignlas.com
EMbody is about the development of fast, intelligent and automatic diagnostic systems. TrakBox is a low cost tracking system to track C. elegans, for long periods of time, and to automatically analyse and report on their behavior; AutoEPG automatically detects the presence of “pumps” in electropharyngeal recordings in C. elegans.

Genetics Society of America
240-880-2000
Ruth.isaacson@thegsajournals.org
Genetics-gsa.org
Come explore the resources and opportunities that GSA has to offer; meet members of the GSA staff and leadership; and find out about publishing in GENETICS and G3: Genes|Genomes|Genetics.

Gerotech, Inc
206-953-1430
admin@gerotechsolutions.com
www.gerotechsolutions.org
At its core, scientific research is about repeated observations and quantification. At Gero Tech we develop automated, easy-to-use systems to accelerate discovery and improve rigor and reproducibility. The Wormbot G1 is a high-throughput, automated robotic system optimized for behavior and survival analysis in C. elegans.

Leica Microsystems
847-405-7039
vicky.thoene@leica-microsystems.com
www.leica-microsystems.com
Leica Microsystems develops and manufactures microscopes and scientific instruments for the analysis of microstructures and nanostructures. The company is one of the market leaders in compound and stereo microscopy, digital microscopy, confocal laser scanning microscopy, electron microscopy sample preparation, optical coherence tomography, and surgical microscopes

Luxendo, A Bruker Company
608-662-0022
dane.maxfield@bruker.com
www.luxendo.eu
Luxendo, a Bruker company, offers cutting-edge light-sheet microscopes for biomedical applications. Developed in close collaboration with EMBL in Heidelberg, Germany, our systems provide high-speed, high signal-to-noise, 3D imaging with confocal-like resolution. Luxendo microscopes feature extremely low levels of photobleaching and phototoxicity making them ideal for long-term imaging. www.luxendo.eu

MBF Bioscience
802-388-9290
info@mbfbioscience.com
www.mbfbioscience.com
WormLab (developed by MBF Bioscience) is a complete solution for automated imaging and quantitative analysis of C. elegans behavior. Our patented technology fully automates your optogenetic and mechanosensation assays for easy correlation of behavior with programmable stimuli and accurately tracks through complex movements like coiling, entanglements or self-overlap. mbfbioscience.com/wormlab

microPublication Biology
415-306-4150
contact@micropublication.org
www.micropublication.org
microPublication Biology is a peer-reviewed open-access journal that publishes single experiment results, which receive a DOI, and your data is deposited into WormBase. microPublication Biology will get your individual research findings out to the research community that might otherwise remain unpublished and provides credit to those who did the work.
NemaMetrix has been developing and providing tools & solutions to enable research using *C. elegans* and parasitic worms since 2011. NemaMetrix’s offerings expand the entire workflow including nutrition for growing *C. elegans*, creating transgenics using CRISPR and other genome editing technologies and finally measuring the phenotypic behaviors.

Tritech Research
Tel: 310-446-4460
ap@TritechResearch.com
www.TritechResearch.com
Of, by, and for the *C. elegans* community, Tritech’s been bringing cost-savings and technical innovations to worm people for 26 years. Your support allows us to bring down costs with our complete microINJECTOR system, PourBoy plate-pourer, DigiTherm incubators, non-vented dishes, new low-cost Fluorescence Stereomicroscope - we’re here to help - call us! 310-446-4460

Union Biometrica
508-893-3115
sales@unionbio.com
www.unionbio.com
Union Biometrica provides flow cytometry for objects that are too large for traditional cytometers, such as fungal pellets, and offers an alternative to manual sorting. These instruments analyze and dispense objects based on size and fluorescent parameters. Automating this process offers increased speed, sensitivity, quantification, and repeatability of experiments.

WormAtlas
www.wormatlas.org
WormAtlas offers detailed descriptions of the anatomy and physiology of hermaphrodite, male, dauer, embryo and aging animals. We will provide live demonstrations of our content and guidance on new functions and features for both WormAtlas and WormImage, our website that provides access to an extensive collection of EM images.

WormBase
626-395-2181
pws@caltech.edu
www.wormbase.org
WormBase staff will be on hand to answer your questions and to take your comments and suggestions. We will provide live demonstrations of how to use our tools as requested, as well as how to submit your data to WormBase.

WormGUIDES
212-639-7744
baoz@mskcc.org
wormguides.org
WormGUIDES is a 4D atlas of embryogenesis representing cell positions and neuronal outgrowth over time and space. We will feature the latest release of our desktop atlas containing an increasing number of individual neural outgrowths, a web based beta version atlas and StarryNite the software underlying our cell tracking.
Thursday, June 20
7:00 p.m. – 7:15 p.m.
Royce Hall

Conference Welcome
Conference Organizers
Julie Ahringer, Gurdon Institute and Cambridge University and
Michael Koelle, Yale University

GSA Welcome
Swathi Arur, University of Texas and
Jordan Ward, University of California, Santa Cruz

Tribute to Sydney Brenner and John Sulston

Thursday, June 20
7:15 p.m. – 10:05 p.m.
Royce Hall

Plenary Session 1
Session Chairs:
Lisa Petrella, Marquette University
Richard Poole, University College London

1 - 7:15 The basement membrane toolkit: Looking outside the cell. David Sherwood, Duke University

2 - 7:45 An actin-based viscoplastic lock ensures progressive body axis elongation. Alicia Lardennois, Institut Biologie Paris Seine, Sorbonne Université

3 - 7:57 4D High Content Imaging and Automated Phenotypic Profiling of C. elegans Embryogenesis. Rebecca Green, LICR - UCSD

4 - 8:09 A gene regulatory network differentiates cyclical LIN-42 signals at different developmental stages to specify the timing of DTC migration. Yi-Chen Chen, Institute of Chemistry, Academia Sinica

5 - 8:21 The long non-coding RNA lep-5 promotes the juvenile-to-adult transition by destabilizing LIN-28. Karin Kiontke, New York Univ

8:33 - Break

6 - 8:53 Dauer-inducing pheromones correct heterochronic phenotypes caused by insufficient expression of let-7 family microRNAs in C. elegans. Orkan Ilbay, Umass Medical School

7 - 9:05 How do cells throw out the trash? Classical and unexpected cytoskeletal contributions to neuronal garbage ejection. Meghan Arnold, Rutgers University

8 - 9:17 Synapse specific resolution of an olfactory memory and its remodeling during sleep. Sarah Nordquist, UCSF

9 - 9:29 Structural plasticity of the C. elegans connectome across development and between individuals. Daniel Witvliet, University of Toronto

10 - 9:41 The C. elegans Neuronal Gene Expression map and Network (CeNGEN). David Miller, Vanderbilt University

11 - 9:47 Caenorhabditis Genetics Center (CGC). Aric Daul, Univ of Minnesota

12 - 9:53 Recompleting the Caenorhabditis elegans genome. Erich Schwarz, Cornell University

PLENARY, PARALLEL AND WORKSHOP SESSIONS

Friday, June 21
8:30 a.m. – 11:30 a.m.
Grand Horizon Ballroom

Germline: Meiosis and Development

Session Chairs:
Hannah Seidel, Eastern Michigan University
Carolyn Phillips, University of Southern California

14 - 8:30 Identification of novel synaptonemal complex components in C. elegans. Matthew Hurlock Johns Hopkins University

15 - 8:42 Regulation of sister chromatid crossovers maintains genomic integrity during meiosis. Erik Toraason University of Oregon

16 - 8:54 Specific chromatin marks regulate the recognition of crossover position for accurate chromosome segregation. Laura Lascarez Lagunas Harvard Medical School

17 - 9:06 Using spindle assembly defective mutants to investigate polar body extrusion during oocyte meiosis. Aleesa Schlientz University of Oregon

18 - 9:18 Somatic gonad precursors assemble a basement membrane that guarantees primordial germ cell quiescence and gonad integrity during embryogenesis. Daniel McIntyre NYU Medical Center

19 - 9:30 DAF-18/PTEN inhibits germline zygotic gene activation during primordial germ cell quiescence. Amanda Fry NYU School of Medicine

20 - 9:42 The TRIM32-related ubiquitin ligase, GRIF-1, reprograms primordial germ cells to ensure germ cell immortality. Tosin Oyewale Martin Luther University of Halle

21 - 10:18 The MES chromatin regulators ensure germline survival by repressing the X chromosomes. Chad Cockrum University of California at Santa Cruz

22 - 10:30 Identifying Transcription Factor Drivers of a Soma-to-Germline Transformation. Paul Goetsch Michigan Technological University

23 - 10:42 The balance of activities of PUF family proteins FBF-1 and FBF-2 coordinately regulates germline stem cell proliferation and differentiation in C. elegans. Xiaobo Wang University of Montana

24 - 10:54 The Adhesion GPCR LAT-1 mediates germ cell proliferation control and cross-talks with the Notch pathway. Simone Prömel Leipzig University

25 - 11:06 Evidence for Notch signaling in the germline in the absence of the APH-2/Nicastrin subunit of gamma secretase. Caroline Goutte Amherst College

26 - 11:18 Rapid, population-wide decline in germline stem cell number and activity during reproductive aging in C. elegans. Zuzana Kocissova Washington University

9:54 - Break
Friday, June 21
8:30 a.m. – 11:30 a.m.
DeNeve Auditorium

Aging and Longevity
Session Chairs:
Arjumand Ghazi, Children's Hospital of Pittsburgh
Ye Tian, IGDB,CAS,China

27 - 8:30 Automated Microfluidic-Based Platform for Longitudinal Healthspan Tracking of *C. elegans*. [Kim Le](#) Georgia Institute of Technology

28 - 8:42 Transcriptomics-based screening identifies pharmacological inhibition of Hsp90 as a means to defer aging. [Christian Riedel](#) Karolinska Institute

29 - 8:54 Glucose-induced unfolded protein response extends lifespan of aged animals. [Guillaume Thibault](#) Nanyang Technological University

30 - 9:06 Atf-6 regulates lifespan through ER-mitochondrial calcium homeostasis. [Kristopher Burkewitz](#) Vanderbilt University

31 - 9:18 Protein sequence editing of SKN-1A/Nrf1 by peptide:N-glycanase controls proteasome gene expression and longevity. [Nicolas Lehrbach](#) Massachusetts General Hospital

32 - 9:30 Early Life Reactive Oxygen Species Target Histone Methylation to Individualize Stress resistance and Lifespan. [Daphne Bazopoulou](#) University of Michigan

33 - 9:42 DAF-16/FOXO and HSF-1 rejuvenate immunity via an INS-7-mediated positive feedback loop in *daf-2* mutants. [Yujin Lee](#) KAIST

9:54 - Break

34 - 10:18 Regulation of Lifespan by REST-Mediated Effects on Neuronal Activity. [Joseph Zullo](#) Harvard Medical School

35 - 10:30 The Neuropeptide Receptor FRPR-8 Regulates Life Span in a *C. elegans* Thermosensory Circuit. Yi-Han Lee Institute of Molecular Medicine, National Taiwan University, Taipei, Taiwan

36 - 10:42 Role of neuronal-peptides in intestinal and organismal aging. [Anupama Singh](#) Salk Institute for Biological Studies

37 - 10:54 Age-related neuronal changes, lifespan pathways and maintenance of neuronal architecture. [Ju-Ling Liu](#) Université du Québec à Montréal

38 - 11:06 Sex-specific regulation of Lifespan in *C. elegans*. [Veerle Rottiers](#) UC Berkeley

39 - 11:18 Somatic aging pathways regulate reproductive plasticity resulting from early life starvation in *Caenorhabditis elegans*. [Maria Ow](#) Syracuse University
Neurobiology: Synapses and Circuits

Session Chairs:
Ithai Rabinowitch, Hebrew University of Jerusalem
Thomas Boulin, Université Lyon

Friday, June 21
8:30 a.m. – 11:30 a.m.
Palisades Ballroom

40 - 8:30 The head mesodermal cell (HMC) controls aBoc. Ukjin Choi Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California

41 - 8:42 C. elegans egg-laying behavior is controlled by an internal, stretch-dependent homeostat that is gated by external sensory input. Kevin Collins University of Miami

43 - 9:06 A Novel and Diverse Group of Ligand-gated Ion Channels. Iris Hardege MRC Laboratory of Molecular biology

44 - 9:18 Profiling gene expression of an entire nervous system one neuron at a time. Seth Taylor Vanderbilt University

45 - 9:30 Syndecan is an organizer of the C. elegans neuromuscular junction. Camille Vachon Institut NeuroMyoGène

9:54 - Break

47 - 10:18 A novel two-tier mechanism of glutamate clearance in the glia-deprived C. elegans synaptic hub. Joyce Chan CUNY School of Medicine at City College

48 - 10:30 Neuropeptide FLP-24 receptor ZZZ-1 mediates a chloride current to control locomotion quiescence during stress-induced sleep. Han Wang California Institute of Technology

49 - 10:42 Sexually dimorphic dopaminergic signaling regulates behavioral states of C. elegans. Satoshi Suo Saitama Medical University

50 - 10:54 SAX-7/L1CAM genetically interact with MPK-1/Erk to coordinate locomotion. Lihsia Chen University of Minnesota

51 - 11:06 Environmental programming of adult foraging behavior. Sreeparna Pradhan McGill University

52 - 11:18 Neural dynamics for bidirectional regulation of experience-dependent gustatory behavior. Hirofumi Sato The University of Tokyo
Friday, June 21
8:30 a.m. – 11:30 a.m.
Northwest Auditorium

Pathogenesis, Ecology, and Evolution

Session Chairs:
Yen-Ping Hsueh, Academia Sinica
Aaron Reinke, University of Toronto

53 - 8:30 Identification of genes that regulate self-fertility in *C. tropicalis*. **Ronald Ellis** Rowan University SOM

54 - 8:42 Evolution of sex ratio through gene loss. **Eric Haag** University of Maryland

55 - 8:54 Deciphering the unusually small genomes of male-female *C. wallacei* versus hermaphroditic *C. tropicalis* with whole-chromosome genome assemblies. **Erich Schwarz** Cornell University

56 - 9:06 Population selection and sequencing of *C. elegans* wild isolates identifies a region on chromosome III affecting starvation resistance. **Amy Webster** Duke University

57 - 9:18 Selfish mitochondrial genomes propagate by exploiting nutrient-sensing mechanisms. **Maulik Patel** Vanderbilt University

58 - 9:30 Selecting for functions: metagenomic identification of essential functions of the microbiome in the *C. elegans* gut. **Adrien Assie** Baylor College of Medicine

59 - 9:42 Natural *C. elegans* Microbiota Protects against Infection via Production of a Cyclic Lipopeptide of the Viscosin Group. **Kohar Annie Kissoyan** Christian Albrechts University of Kiel

9:54 - **Break**

60 - 10:18 Widespread cholesterol auxotrophy in the animal kingdom through the co-opting of sterol synthesis enzymes. **Amir Sapir** University of Haifa at Oranim

61 - 10:30 Purine metabolism regulates the Intracellular Pathogen Response. **Eileen Tecle** UCSD

62 - 10:42 NHR-49 regulates HLH-30-mediated innate immune response via a flavin-containing monooxygenase in *C. elegans*. **Khursheed Wani** University of Massachusetts Medical School

63 - 10:54 Neuronal GPCR NPR-8 regulates *C. elegans* defense against pathogen infection. **Durai Sellegounder** Washington State University

64 - 11:06 Revealing mechanisms of inherited immunity using a *C. elegans* model of microsporidia infection. **Alexandra Willis** University of Toronto

65 - 11:18 *C. elegans* is capable of highly specific interactions with its natural pathogen *B. thuringiensis* mediated by the GATA transcription factor ELT-2. **Alejandra Zarate Potes** CAU Kiel
Friday, June 21
1:00 p.m. – 2:30 p.m.
Palisades Ballroom

CRISPR: New Techniques and Best Practices

Organizers: Jordan Ward (UC Santa Cruz) and Dave Matus (Stony Brook University)

This workshop will bring together experts in CRISPR to discuss new approaches that they are developing, and to provide practical guidance and best practices for groups hoping to get CRISPR working efficiently in their labs.

1:00 New tools for high-efficiency CRISPR/Cas9 gene tagging. Matt Schwartz

1:10 How to get rolling with CRISPR. Krishna Ghanta

1:20 Nested CRISPR as an alternative cloning-free method to efficiently generate endogenous fluorescent reporters. Xènia Serrat

1:30 Introduction to SKI LODGE: a single-copy knock-in system for defined gene expression. Carlos G. Silva-García

1:40 Generating the tools to enable LbCas12a editing in *C. elegans*. Steve Von Stetina

1:50 Concluding remarks and future perspectives. Jordan Ward and Dave Matus

2:00 General discussion

Friday, June 21
1:00 p.m. – 2:30 p.m.
DeNeve Auditorium

Microfluidics and Customized Experimental Platforms

Organizers: Adriana San-Miguel (NC State University), Siva Vanapalli (Texas Tech University) and Dirk Albrecht (WPI)

Lab-on-chip and customized experimental platforms have become more common in *C. elegans* research. This workshop will focus on the application of these methodologies as enabling tools for high-throughput experimentation, longitudinal studies, high-content approaches, and environmental control in diverse areas of *C. elegans* research.

1:00 The Lifespan Machine V2.1: New hardware and algorithms identify multiple stages of death. Nick Stroustrup

1:12 *vivo*Chip: A large scale microfluidic imaging platform for *C. elegans*. Sudip Mondal (Ben-Yakar Lab)

1:24 On-chip worm immobilization, functional imaging and beyond. Daphne Bazopoulou (Chronis Lab)

1:36 Robotic Systems for Worm Imaging and Manipulation. Anthony Fouad (Fang-Yen Lab)

1:48 An automated microfluidic machine for whole-life investigations in *C. elegans*. Taslim Anupom (Vanapalli Lab)

2:00 General discussion
PLENARY, PARALLEL AND WORKSHOP SESSIONS

Friday, June 21
1:00 p.m. – 2:30 p.m.
Northwest Auditorium

Glia: Exciting Discoveries and New Approaches

Organizers: Max Heiman (Harvard Medical School, Boston Children’s Hospital) and Aakanksha Singhvi (Fred Hutchinson Cancer Research Center)

Glia impinge on every aspect of nervous system development and function. However, until recently, the biology of these important cells was largely overlooked. This workshop will serve as a gathering point for the emerging C. elegans glial community and help newcomers enter this growing field by (1) defining recent discoveries that make glia an exciting new area of neuroscience research, (2) identifying tools available to study C. elegans glia, and (3) highlighting some major open questions for future studies.

1:00 Overview: Development of glia. Max Heiman

1:05 Overview: Glia-neuron interactions. Aakanksha Singhvi

1:25 Specialized glia drive initiation of circuit assembly through characteristic morphogenesis and molecular crosstalk with defined pioneers. Georgia Rapti and Shai Shaham

II. Glia-neuron interactions

1:35 C. elegans touch receptors require glial Na+/K+ ATPase for glia-neuron ionic and metabolic link. Christina K. Johnson and Laura Bianchi

1:45 Genetic variation in glia-neuron signaling modulates aging rate. Ge Gao and Shi-Qing Cai

2:00 General discussion

Friday, June 21
1:00 p.m. – 2:30 p.m.
Grand Horizon Ballroom

Career Success: Strategies to Develop Visibility When You Prefer to be a Wallflower

Organizers: Heather Archer, University of Oregon, and Sonia Hall, Genetics Society of America

Career success depends on more than good performance. The Fortune 100 consultant Harvey Coleman suggested doing your job well is only 10% of an individual’s success, 90% is image and exposure. This may be exaggerated, but the implications are accurate. However, many of us spend our time focused on performance and are reluctant to invest in image or exposure. This workshop will focus on strategies to develop image and exposure aimed at late-stage graduate students and postdocs. The strategies in this workshop will also be tailored to individuals who are reluctant to put themselves 'out there'.

1:00 Icebreaker – Circle of commonalities. Heather Archer

1:10 Panel Discussion. Rashmi Chandra moderator
Visibility through art/writing. Ahna Skop
Tweeting for exposure. Dana Miller
Visibility through service. Sonia Hall
Blogging/website.

1:30 Breakout Session #1

1:45 Breakout Session #2

2:00 Action plan/accountability partner activity
PLENARY, PARALLEL AND WORKSHOP SESSIONS

Friday, June 21
3:00 p.m. – 6:00 p.m.
Royce Hall

Plenary Session 2
Session Chairs:
Elizabeth Glater, Pomona College
Christian Frokjaer-Jensen, King Abdullah University

66 - 3:00 The *C. elegans* embryonic transcriptome with lineage-resolved single cell RNA-seq. **Robert Waterston** University of WA, Seattle

67 - 3:30 Nothing in *Caenorhabditis* biology makes sense except in the light of evolution: The *Caenorhabditis* Genomes Project. **Lewis Stevens** University of Edinburgh

68 - 3:42 Massive sampling of *Caenorhabditis elegans* across the Hawaiian Islands reveals remarkable genetic diversity on the islands and admixture with European populations. **Tim Crombie** Northwestern University

69 - 3:54 Evolution of the *Caenorhabditis* germ line transcriptional network through transposable element co-option. **Francesco Carelli** University of Cambridge

70 - 4:06 Multiplexed DNA FISH and single-chromosome clustering reveal lamina-induced stretching and structural diversity. **Ahilya Sawh** University of Basel

71 - 4:18 Expression and functional studies of the DM-domain transcription factors reveal novel sexual dimorphisms. **Chen Wang** Columbia University

72 - 4:30 A global tissue scaffold defines the major routes of axon outgrowth in *C. elegans*. **Christopher Brittin** Memorial Sloan Kettering Cancer Center

4:42 - Break

73 - 5:02 GSA Medal Presentation to Anne Villeneuve.

74 - 5:12 Predicting locomotion from whole-brain neural dynamics in freely moving animals. **Andrew Leifer** Princeton University

75 - 5:24 Mapping circuit-wide neuronal dynamics to a complex goal-directed behavior in *C. elegans*. **Vladislav Susoy** Harvard

76 - 5:36 Four glial cells regulate ER stress resistance and longevity via neuropeptide signaling. **Ashley Frakes** University of California Berkeley

77 - 5:48 A mitochondrial isocitrate dehydrogenase prevents direct reprogramming of germ cells to neurons in *C. elegans*. **Nida Fatima** Max Delbruck Centre for Molecular Medicine

Saturday, June 22
7:30 a.m. – 8:30 a.m.
DeNeve Private Dining Room

microPublication Biology: How to Publish your Single Experimental Findings

Organizers: Karen Yook (California Institute of Technology) and Daniela Raciti (California Institute of Technology)

C. elegans research has expanded by DPYs and LONs - how much of your data will make it to publication? How can researchers ensure experimental results remain accessible and not forgotten in a lab notebook or as the 20th supplemental figure? microPublication.org is about speed, brevity, scientific rigor and credit for work done: fast, short, and easy to draft publications that are peer reviewed and citable. Come to the breakfast and hear about the project, talk with editors and *C. elegans* researchers who have authored or peer-reviewed articles and determine if you have results that are ready for microPublication.

Participants will include: Oliver Hobert, Nicole Liatchko, Brent Neumann, Cathy Savage-Dunn, Janis Weeks, and from the microPublication Team: Paul Sternberg, Tim Schedl, Todd Harris, Daniela Raciti, and Karen Yook
Saturday, June 22
8:30 a.m. – 11:30 a.m.
Northwest Auditorium

RNA Interference and Noncoding RNAs

Session Chairs:
- Priscilla Van Wynsberghe, Colgate University
- Heng-Chi Lee, University of Chicago

87 - 10:42 Extracellular double-stranded RNA enters the *C. elegans* germline through different mechanisms across developmental time. **Nathan Shugarts** University of Maryland, College Park

88 - 10:54 Neuronal small RNAs control behavior transgenerationally. **Oded Rechavi** Tel Aviv University

89 - 11:06 Feedback between the retinoid-related orphan nuclear receptor NHR?23 and *let?7* family microRNAs governs both the frequency and number of molts. **Ruhi Patel** David Geffen School of Medicine, UCLA

90 - 11:18 *C. elegans* diapause formation as a defense mechanism against *P. aeruginosa* infection is mediated by bacterial quorum sensing regulator *rsmY*. **Marcela Legüe** Universidad Mayor

78 - 8:30 Exploring a novel germline gene silencing pathway “supersilencing” that responds to splicing abnormalities. **Yekaterina Makeyeva** UMass Medical School

79 - 8:42 A new 22G-RNA pathway targets the 3’ UTRs of functional germline genes in *C. elegans*. **Weifeng Gu** Univ of Calif Riverside

80 - 8:54 A Systematic Analysis of Argonaute Proteins in *C. elegans*. **Uri Seroussi** University of Toronto

81 - 9:06 A family of nuclear-Argonaute interacting proteins gates nuclear RNAi. **Alexandra Lewis** McGill University

82 - 9:18 Localization and regulation of Argonaute proteins. **Carolyn Phillips** University of Southern California

83 - 9:30 Transgenerational silencing of histone genes cause sterility in piRNA mutant. **Giorgia Barucci** Institut Pasteur

84 - 9:42 Temperature increases cause transposon-associated DNA damage specific to spermatocytes and not oocytes. **Nicole Kurhanewicz** University of Oregon

9:54 - Break

85 - 10:18 Germline RNA helicases drive the phase separation and perinuclear anchoring of germ granules to promote piRNA-mediated genome surveillance. **Heng-Chi Lee** University of Chicago

86 - 10:30 Small RNA methylation promotes epigenetic inheritance and germline immortality. **Taiowa Montgomery** Colorado State University
PLENARY, PARALLEL AND WORKSHOP SESSIONS

Saturday, June 22
8:30 a.m. – 11:30 a.m.
DeNeve Auditorium

Stress
Session Chairs:
Natalia Kirienko, Rice University
Aimee Kao, University of California, San Francisco

91 - 8:30 Self-sperm induce resistance to the detrimental effects of sexual encounters with males in hermaphroditic nematodes. Lauren Booth Stanford University School of Medicine

92 - 8:42 Insulin-like peptides and the mTOR-TFEB pathway protect C. elegans hermaphrodites from Mating-induced Death. Cheng Shi Princeton University

93 - 8:54 Inter-individual variability in neuronal stress creates phenotypic variability. Laetitia Chauve Babraham Institute

94 - 9:06 A memory circuit for coping with impending adversity. Yifat Eliezer Hebrew University

95 - 9:18 Axonal transport of an insulin-like peptide mRNA promotes stress recovery. Rashmi Chandra WAYNE STATE UNIVERSITY

96 - 9:30 Insulin-Dependent Quiescence and Arrest at Hatching. Bruce Wightman Muhlenberg College

97 - 9:42 The flight response impairs cytoprotective mechanisms through neural inhibition of the insulin pathway. Diego Rayes CONICET- Universidad Nacional Del Sur

98 - 10:18 ALA / RIS-dependent, neuropeptide-mediated quiescence follows mild sensory arousal during a Caenorhabditis elegans stress state. Patrick McClanahan University of Pennsylvania

99 - 10:30 Suppression of distinct mitochondrial mutants by hypoxia. Joshua Meisel Mass General Hospital

100 - 10:42 ATFS-1 extends cellular longevity by protecting mitochondrial DNA from double-strand breaks. Steven Zuryn The University of Queensland

101 - 10:54 Wnt signaling mediates intercellular mitochondrial stress response and aging. Ye Tian Institute of Genetics and Developmental Biology, CAS

102 - 11:06 The anti-cancer drug cisplatin selectively perturbs membrane protein targeting to the ER via oxidation of ASNA-1. Dorota Raj Gothenburg University

103 - 11:18 VRK-1 promotes longevity by activating AMPK via phosphorylation. Sangsoon Park Korea Advanced Institute of Science and Technology
PLENARY, PARALLEL AND WORKSHOP SESSIONS

Saturday, June 22
8:30 a.m. – 11:30 a.m.
Palisades Ballroom

Neurobiology: Sensory Responses and Novel Methods
Session Chairs:
Michael Krieg, Institute of Photonic Science
Eleni Gourgou, University of Michigan

<table>
<thead>
<tr>
<th>Session</th>
<th>Time</th>
<th>Title</th>
<th>Speaker, Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>104</td>
<td>8:30</td>
<td>Internal and External Regulators of Gentle Touch Sensitivity.</td>
<td>Hieu Hoang, Columbia University</td>
</tr>
<tr>
<td>105</td>
<td>8:42</td>
<td>Piezo channel PEZO-1 regulates intestinal motility in C. elegans.</td>
<td>Jihye Yeon, DGIST</td>
</tr>
<tr>
<td>106</td>
<td>8:54</td>
<td>Mechanoreceptor-mediated temperature sensation in cold tolerance.</td>
<td>Natsume Takagaki, Konan University</td>
</tr>
<tr>
<td>107</td>
<td>9:06</td>
<td>Inter-tissue signals drives inter-animal communication driving collective food-seeking behavior in C. elegans.</td>
<td>Sreekanth Chalasani, Salk Institute for Biological Studies</td>
</tr>
<tr>
<td>108</td>
<td>9:18</td>
<td>Endocannabinoid modulation of chemosensation underlying altered food preferences in C. elegans.</td>
<td>Anastasia Levichev, University of Oregon</td>
</tr>
<tr>
<td>109</td>
<td>9:30</td>
<td>Presynaptic MAST Kinase Controls Bidirectional Post-Synaptic Responses to Convey Stimulus Valence during C. elegans Thermotaxis.</td>
<td>Shunji Nakano, Nagoya University</td>
</tr>
<tr>
<td>110</td>
<td>9:42</td>
<td>Serotonin and DAG signals regulate active forgetting of olfactory adaptation.</td>
<td>Mary Arai, Kyushu University</td>
</tr>
<tr>
<td>111</td>
<td>10:18</td>
<td>Characterisation of new regulators of the O2-sensing circuit in C. elegans.</td>
<td>Giulio Valperga, MRC Laboratory of Molecular Biology</td>
</tr>
<tr>
<td>112</td>
<td>10:30</td>
<td>Preferential activation of the che-1 promoter ensures stable ASE-cell fate maintenance despite stochastic fluctuations in CHE-1 level.</td>
<td>Joleen Traets, AMOLF</td>
</tr>
<tr>
<td>113</td>
<td>10:42</td>
<td>Precise Spatio-temporal Control of Gene Expression by Laser Illumination.</td>
<td>Sebastian Greiss, University of Edinburgh</td>
</tr>
<tr>
<td>114</td>
<td>10:54</td>
<td>A Photoactivatable Botulinum Neurotoxin for Inducible Control of Neurotransmission.</td>
<td>Martin Schneider, Institute of Biophysical Chemistry</td>
</tr>
<tr>
<td>115</td>
<td>11:06</td>
<td>Whole-Brain Functional and Molecular Connectomics using the NeuroPAL.</td>
<td>Eviatar Yemini, Columbia University</td>
</tr>
<tr>
<td>116</td>
<td>11:18</td>
<td>Characterizing neuronal gene expression with a 'Standard Worm.</td>
<td>Matthew Rich, University of Utah</td>
</tr>
</tbody>
</table>

9:54 - Break
PLENARY, PARALLEL AND WORKSHOP SESSIONS

Saturday, June 22
8:30 a.m. – 11:30 a.m.
Grand Horizon Ballroom

Development: Cell
Signaling, Fate, and Patterning

Session Chairs:
Daniel Shaye, UIC College of Medicine
Anna Allen, Howard University

117 - 8:30 A switch from non-canonical to canonical Wnt signaling stops QR descendant migration through a Slt/Robo and RGA-9/RhoGAP dependent mechanism. Hendrik Korswagen Hubrecht Institute

118 - 8:42 The WNT/Ca²⁺ and WNT/PCP signaling pathways function in the male tail to regulate sex-specific anal depressor remodeling during development. Brigitte LeBoeuf Texas A&M University

119 - 8:54 Reciprocal control of Wnt and Frizzled asymmetry during cell polarization. Hitoshi Sawa National Institute of Genetics

120 - 9:06 lin-12/Notch-mediated lateral specification: new insights from the AC/VU decision in gonadogenesis. Michelle Attner Columbia University

121 - 9:18 The Rheb-TORC1 signalling axis functions as a developmental checkpoint. David Reiner Texas A&M University

122 - 9:30 Reciprocal regulation between DBL-1/BMP signaling and cuticle collagen genes. Cathy Savage-Dunn Queens College and the Graduate Center, CUNY

9:54 - Break

124 - 10:18 Two parallel arms of the heterochronic pathway defined by LIN-29 isoform function. Chiara Azzi Friedrich Miescher Institute

125 - 10:30 Genetic Control of the Maintenance of the AIA Cell Identity. Joshua Saul MIT

126 - 10:42 Global regulation of phosphatases determines cell fate. Matthew Eroglu University of Toronto

127 - 10:54 One cell, many deaths: the orchestrated demise of the C. elegans tail-spike cell. Piya Ghose The Rockefeller University

128 - 11:06 Developmentally programmed change in chromatin states coordinates embryonic plasticity with cell fate restriction. Ryan Gleason Johns Hopkins University

129 - 11:18 Teething during sleep: an ultrastructural account of pharyngeal grinder development during lethargus, a phenomenon underpinned by muscle cell fate re-differentiation. Alessandro Sparacio Saint Joseph’s University
Small Things Considered: 2nd C. elegans Workshop on the Microbiome

Organizers: Buck Samuel (Baylor College of Medicine), Michael Shapiro (UC Berkeley) and Hinrich Schulenburg (University Kiel)

Studies of the natural ecology of C. elegans in recent years have shown that microbes not only play a role as potential food or pathogens, but can also colonize the intestines of C. elegans as multi-species communities (or 'microbiomes'). The aim of this workshop is to provide an overview of this emerging field, as well as to introduce a new 12-member model microbiome (CeMbio), useful research pipelines, and a wealth of additional resources. The tools discussed will open the door to any researcher wanting to investigate C. elegans biology in a more natural microbial context.

1:00 Microbiome in a box: intro to CeMbio. Adrien Assié
1:08 Exploring mechanisms of C. elegans microbiota-mediated protection against pathogen infection. Kohar Kissoyan
1:16 Genetic control of Enterobacter commensal abundance and function in C. elegans. Michael Shapiro
1:24 Functional analysis of interactions between natural isolates of C. elegans and Stenotrophomonas bacteria. Leah Radek
1:32 Phenomic high-throughput screens for nutrient-drug-microbe-host interactions. Felipe Cabriero
1:40 Identifying bacterial modifiers of C. elegans lipogenesis. Amy Walker
1:48 Indoles from commensal bacteria extend healthspan. Robert Sonowal
2:00 General discussion

Wormbase 2019: Data, Tools, and Community Curation

Organizers: Ranjana Kishore and Chris Grove, California Institute of Technology

This workshop will be an interactive session in order to discuss the data on gene pages and query tools in WormBase such as SimpleMine, WormBase Ontology Browser and Enrichment Analysis tools. The WormMine data warehouse tool, ParaSite BioMart, the JBrowse genome browser tool, and the WormBase Application Programming Interface (API) will also be discussed. We will discuss common use cases and explain the fundamentals of how to retrieve data in each case. We will also demonstrate how to find data across model organisms at the Alliance of Genome Resources (https://www.alliancegenome.org/).

1:00 Keep your widgets open: the WormBase gene page. Kimberly Van Auken
1:05 When a few genes are not enough: data mining with SimpleMine, WormMine and BioMart. Wen Chen, Chris Grove and Kevin Howe
1:20 Cruising the genome with JBrowse. Scott Cain
1:35 Visualizing data with the Ontology Browser and Enrichment Analysis. Raymond Lee
1:45 More than just worms: cross-species data at the Alliance of Genome Resources. Ranjana Kishore
1:50 Be a community curator! Submit data to WormBase. Daniela Raciti
2:00 General discussion
PLENARY, PARALLEL AND WORKSHOP SESSIONS

Real-Time Biochemistry and Biophysics in Live Worms

Organizers: Javier Apfeld (Northeastern University) and Erin Cram (Northeastern University)

This workshop will focus on the new opportunities for real-time biochemistry and biophysics in live worms. New genetically-encoded biosensors open the door for biochemical and biophysical measurements in live animals. It will emphasize the challenges and opportunities of deploying these biosensors in C. elegans. Talks will highlight the empirical and theoretical challenges of extracting biological meaning from biosensor measurements. We will discuss diverse biosensor applications, such as measurements of voltage, chemical redox potentials, metabolites, ions, and signaling activities in live animals. Open discussion will focus on the strengths and weaknesses of various approaches, and the technical secret sauce of using biosensors.

1:00 Mehanosensing using genetically encoded tension sensors. Michel Krieg
1:12 Generating, implementing and analyzing ratiometric kinase-based biosensors in C. elegans. Rebecca Adikes, Abraham Q. Kohrman and David Q. Matus
1:36 Counting and visualizing protein complexes in single-embryo lysates. Dan Dickinson
1:48 What is your genetically-encoded biosensor good for? Julian Stanley and Javier Apfeld
2:00 General discussion

Assay Development for Human Disease Models in C. elegans

Organizers: Andy Golden (NIDDK/National Institutes of Health) and Anne Hart (Brown University)

From exomes of rare disease patients, candidate gene mutations are being readily identified. Many C. elegans researchers are modeling human diseases by making the analogous mutation in the worm ortholog. A challenge to the field is modeling approaches and the development of assays to detect subtle phenotypes, especially when little is known about the cellular function of a given gene. Such assays are essential for the characterization of any mutant phenotype. This workshop aims to discuss approaches to modeling and a wide variety of assays available to the worm community to tackle this need.

1:00 Development and characterization of C. elegans knock-in models of ALS. Saba Baskoylu
1:12 Combining CRISPR-Cas9 human gene replacement and phenomics to discover conserved functions of disease-associated genes and decipher variants of uncertain significance. Troy McDiarmid
1:24 Modeling Human Disease: A C. elegans Test System Utilizing Pharyngeal Pumping Phenotypes. Anna Malinkevich
1:36 Modeling perturbed dopamine neuron signaling and viability in C. elegans. Osama Refai
1:48 Using nematode burrowing to challenge and assess neuromuscular integrity. Kiley Hughes
2:00 General discussion
Food on the Mind: Sensory Detection of Food and Integrative Feeding Behaviors in *C. elegans*

Organizers: Steven Flavell (MIT) and Elizabeth Glater (Pomona)

The purpose of this workshop is to discuss recent work and future goals in the areas of sensory detection of bacterial food, internal sensing of feeding state and how different bacterial food sources affect the nervous system and behavior. This research area has seen rapid growth in recent years, but major challenges remain ahead. This cross-disciplinary topic touches on the fields of metabolism, innate immunity, and neuroscience. This workshop will include discussions of long-standing hypotheses, open questions, and community-minded resources and technologies.

1:00 Serotonergic circuits that control *C. elegans* foraging behaviors. Steven Flavell

1:10 Understanding how microbial cues and internal state influence *daf-7* expression in the ASJ neuron pair to modulate decision-making behavior of *C. elegans*. Sonia Anne Boor and Dennis Kim

1:20 Neuroeconomics, Marijuana, and the Worm. Shawn Lockery

1:30 Two distinct sets of chemosensory neurons involved in food-related navigation. Moonsun Jang and Yuichi Iino

1:40 From central neurons to the gut and back: who’s the boss? Supriya Srinivasan

1:50 How *C. elegans* recognizes odor bouquets released by bacterial food. Elizabeth Glater

2:00 General discussion
Plenary Session 3

Session Chairs:
Aakanksha Singhvi, Fred Hutchinson Cancer Research Center
Baris Tursun, Max Delbrueck Center Berlin

130 - 3:00 What is aging? David Gems, University College London.

131 - 3:30 An excreted small-molecule signal promotes C. elegans reproductive development and aging. Andreas Ludewig BTI, Cornell

132 - 3:42 Unraveling the function of circRNAs in C. elegans aging. Jaffar Bhat University of Nevada

133 - 3:54 A probiotic gut bacterial species prevents and reverses protein aggregation in a C. elegans model of neurodegenerative disease. Maria Goya University of Edinburgh

134 - 4:06 C. elegans RIG-I homolog drh-1 mediates a transcriptional response to Orsay virus infection. Jessica Sowa University of California San Diego

135 - 4:18 Spiking motor neurons function in a rhythmic behavior in C. elegans. Qiang Liu Rockefeller University

136 - 4:18 X-Chromosome Domain Architecture Regulates Caenorhabditis elegans Lifespan but Not Dosage Compensation. Qiming Yang University of California, Berkeley

137 - 4:18 Establishing C. elegans as the first laboratory animal system to study whole organism polyploidy. Mara Schvarzstein City University of New York, CUNY. Brooklyn College

Emily Troemel introduction

Keynote Address: Cori Bargmann, Rockefeller University, Organizing behavior across timescales.
Gene Regulation and Genomics

Session Chairs:
Steven Zuryn, The University of Queensland
Florian Steiner, Université de Geneve

139 - 8:30 Single molecule tracking in vivo reveals that regulation of RNA Polymerase II recruitment underlies X-chromosome dosage compensation. Nicholas Fuda UC Berkeley

140 - 8:42 Examining transcription dynamics at the single molecule level in individual promoters. Jennifer Semple University of Bern

141 - 8:54 Direct full-length RNA sequencing reveals unexpected transcriptome complexity during C. elegans development. Zhongying Zhao Hong Kong Baptist University

142 - 9:06 Distinct regulatory architectures of germ line and somatic genes. Jacques Serizay Gurdon Institute

143 - 9:18 Quantitative analysis of Spliced Leader Trans-Splicing dynamics in C. elegans. Marija Jovanovic Simon Fraser University

144 - 9:30 Conditional, targeted and multiplexed mutagenesis of regulatory sequences in animals. Jonathan Froehlich Berlin Institute for Medical Systems Biology, Max Delbrueck Center for Molecular Medicine

145 - 9:42 Splicing in a single neuron is coordinately controlled by RNA binding proteins and transcription factors. Adam Norris Southern Methodist University

9:54 - Break

146 - 10:18 BMLP-1 and ELT-3 amplify transcriptional output to ensure developmental robustness in C. elegans. Wolfgang Keil Institut Curie

147 - 10:30 Rewiring of the heat-shock response by Helitrons. Jacob Garrigues University of California, San Diego

148 - 10:42 Maternal H3.3 nucleosome assembly complexes are sufficient to prevent late-onset defects and chronic mitochondrial stress. Kirk Burkhart Massachusetts Institute of Technology

149 - 10:54 Repressive H3K9me2 protects lifespan against the transgenerational burden of germline transcription. Teresa Lee Emory University

150 - 11:06 In vivo reprogramming of coelomocytes. Anna Reid Max Delbruck Center for Molecular Medicine in the Helmholtz Association

151 - 11:18 You are what you experience: The impact of environment on transdifferentiation. Sarah Becker IGBMC Gie CERBM
PLENARY, PARALLEL AND WORKSHOP SESSIONS

Sunday, June 23
8:30 a.m. – 11:30 a.m.
DeNeve Auditorium

Metabolism and Dauer
Session Chairs:
Matt Crook, Texas A&M University, San Antonio
Lesley MacNeil, McMaster University

152 - 8:30 A Draft Metabolome for *C. elegans*. Pedro Rodrigues Boyce Thompson Institute - Cornell University

153 - 8:42 Tissue-level compartmentalization of metabolic network function. Safak Yilmaz University of Massachusetts Medical School

154 - 8:54 A Multiomics Approach to Understanding Metabolic Reprogramming by the Hypoxia Stress Response Pathway. Mehul Vora Rutgers, The State University of New Jersey

155 - 9:06 Disruption of intracellular membrane lipids activates a dual transcriptional program to increase lipogenesis and bypass organelle dysfunction. Amy Walker UMASS Medical School

156 - 9:18 PTC-3 is a cholesterol permease which regulates membrane structure and fatty acid composition. Carla Cadena del Castillo University of Basel

157 - 9:30 Ascaroside signaling integrates three segregated lipogenic pathways upstream of the canonical β-oxidation cycle. Stephan von Reuss University of Neuchatel

158 - 9:42 Zinc homeostasis is mediated by reciprocal regulation of CDF-2 and ZIPT-2.3, transporters that store and release zinc from lysosome-related organelles in intestinal cells. Adelita Mendoza Washington University

9:54 - Break

159 - 10:18 Vitamin B12 reduces excitatory signaling through the interaction between choline metabolism and the methionine/SAM cycle. Mark Alkema Univ Massachusetts Med

160 - 10:30 ETS-5 regulates BAG-specific insulin signalling to control intestinal metabolism. Ava Handley Biomedicine Discovery Institute

161 - 10:42 A universal toolkit allows dauer larvae of *C. elegans* to withstand extreme environments. Vamshidhar R. Gade Max Planck Institute for Molecular Cell Biology and Genetics

162 - 10:54 Biosynthetic tailoring of existing ascaroside pheromones alters their biological function in *C. elegans*. Rebecca Butcher University of Florida

163 - 11:06 Functional characterization of an insulin decoy receptor in *C. elegans*. Bryan Martinez The Scripps Research Institute-Florida

164 - 11:18 The role of AMPK signalling in intergenerational inheritance in *Auanema freiburgensis*. Andre Pires da Silva University of Warwick
Neuronal Development, Degeneration and Regeneration

Session Chairs:
Vincent Bertrand, IBDM - CNRS/AIX Marseille University
Kyung Won Kim, Hallym University

165 - 8:30 Weaving a brain, one step at a time: dissecting new molecular pathways initiating embryonic circuit assembly. Georgia Rapti The Rockefeller University

166 - 8:42 A Worm’s First Thought: From Form to Function in the Embryonic Nervous System of C. elegans. Pavak Shah Memorial Sloan Kettering Cancer Center

167 - 8:54 Uncovering the basis of behavioral variation across developmental timescales. Shay Stern Technion- Israel Institute of Technology

168 - 9:06 UNC-119 is part of a cortical microtubule anchoring complex, essential for neuronal polarity establishment and development. Martin Harterink Utrecht University

169 - 9:18 F-box protein MEC-15 promotes microtubule stability and neurite growth by antagonizing the activity of HSP90 chaperone network. Chaogu Zheng The University of Hong Kong

170 - 9:30 Sex and the Circuitry: The ubiquitin and netrin pathways interact to pattern sex-specific dimorphic circuits. Yehuda Salzberg Weizmann Institute of Science

171 - 9:42 The Makorin lep-2 and the lncRNA lep-5 regulate lin-28 to schedule sexual maturation of the C. elegans nervous system. Hannah Lawson University of Rochester Medical Center

172 - 10:18 Wnt and gap junction proteins cooperatively regulate axonal and synaptic tiling in C. elegans. Ardalan Hendi University of British Columbia

173 - 10:30 Regulation of glial size by fatty acids through a novel Golgi-ER mechanism. Dong Yan Duke University

174 - 10:42 AMsh glia engulf AFD sensory neuron ending fragments in C. elegans. Stephan Raiders Fred Hutch Cancer Research Center

175 - 10:54 Bacterially produced neurotransmitter protects injured neurons from degeneration. Arles Urrutia Universidad Mayor

176 - 11:06 The metalloprotease ADM-4 promotes regenerative axonal fusion. Xue Yan Ho The University of Queensland

177 - 11:18 PolyQ Independent Toxicity Occurs in C. elegans models of Novel Translational Products from CAG Repeat Expansions. Paige Rudich University of Pittsburgh

9:54 - Break
PLENARY, PARALLEL AND WORKSHOP SESSIONS

Sunday, June 23
8:30 a.m. – 11:30 a.m.
Northwest Auditorium

Cell Biology
Session Chairs:
Mi Hye Song, Oakland University
Diana Libuda, University of Oregon

178 - 8:30 Systematic monitoring of cell cycle progression reveals only a single cell pair develops with full cell cycle during C. elegans embryogenesis. Ming-Kin Wong Hong Kong Baptist University

179 - 8:42 Visualizing the proliferation-differentiation decision in vivo. David Matus Stony Brook University

180 - 8:54 Analysis of Cyclin B Isoforms Reveals Context-Specific Control of the G2-to-Mitosis Transition in the Cell Cycle. Pablo Lara-Gonzalez Ludwig Institute for Cancer Research

181 - 9:06 Chromosome features that regulate genome partitioning, spindle organization, and couple the centrosome and cell cycles in Caenorhabditis elegans male meiosis. Katherine Rivera Gomez Brooklyn College

182 - 9:18 PAR polarity proteins direct intracellular tube expansion through apical recruitment of the exocyst complex. Joshua Abrams Skirball Institute, NYU School of Medicine

183 - 9:30 A role for the apical PAR complex in reorganizing microtubules in dividing intestinal cells. Maria Sallee Stanford University

184 - 9:42 The secretory pathway, linked to recycling routes, specifies epithelial membrane polarity. Verena Gobel MGHfC, Harvard Medical School

9:54 - Break

185 - 10:18 A multi-compartment neuron reveals differences between apical-basal and axon-dendrite sorting signals. Monique Lillis Boston Children's Hospital

186 - 10:30 Slowpoke, where'd you go? Timothy Cheung Rosalind Franklin University of Medicine & Science

187 - 10:42 PIX-1, a Rho-GEF, Directs Site-Specific Assembly of Integrin Adhesion Complexes in Body Wall Muscle of C. elegans. Jasmine Moody Emory University

188 - 10:54 The Tubulin Code: Writers, erasers, and readers specialize cilia. Robert O'Hagan Montclair State University

189 - 11:06 Formation of a salt-sensing compartment at the tip of cilia. Servaas van der Burght Erasmus MC

190 - 11:18 Oyster mushrooms paralyze the nematode prey by triggering rapid cell necrosis via the sensory cilia. Ching-Han Lee Institute of Molecular Biology
Teaching Workshop: Providing a Broader Research Experience by Collaborating Across Independent CURE Courses

Organizers: Jacqueline Rose (Western Washington University) and Lina Dahlberg (Western Washington University)

This teaching workshop will explore how Course-based Undergraduate Research Experiences (CUREs) can be designed to achieve meaningful collaborations for students and faculty. We will discuss approaches to working within curricular, departmental, and institutional frameworks to combine diverse faculty expertise to expand the range of research that students engage with in a single course. Participants will be encouraged to brainstorm how they might design a collaborative research course at their own institution, or across institutions.

1:00 Describe example course collaborations and student-generated data.
1:30 In groups, develop testable research questions for a collaborative CURE. Considerations: course length, student proficiency, materials and equipment.
1:50 Brainstorm data figures for a collaborative publication. Considerations: technical expertise, your and collaborator’s existing research, broader impacts.
2:20 Brief share-out from participants.

New Tools for Conditional Expression or Degradation

Organizers: David Wynne (University of Portland) and Liangyu Zhang (UC Berkeley)

Spatial and temporal control of gene expression and protein activity have enabled a wide variety of mechanistic studies in C. elegans. This workshop will focus on new tools for increasingly precise and versatile control, including the ZF/ZIF-1 and AID inducible degradation systems, and the cGAL and LBD expression systems.

1:00 Worms on steroids: using ligand binding domains for drug-inducible protein activation. Jordan Ward
1:12 cGAL updates. Han Wang
1:24 Conditional degradation of endogenous proteins in C. elegans using the ZF1/ZIF-1 system. Joshua Abrams
1:36 Tips and applications of the auxin-inducible degradation (AID) system. Liangyu Zhang
1:48 New tools for the AID system. Guin Ashley
2:00 General discussion
Whole-Brain Imaging Workshop

Organizers: Eviatar Yemini (Columbia University) and Manuel Zimmer (Research Institute of Molecular Pathology Vienna)

Whole-brain imaging of *C. elegans* is a rapidly emerging field, with an urgent need to improve technology for both data acquisition and analysis. This workshop will discuss existing technologies and highlight opportunities to advance the field. Talks focus on 3 broad topics: 1) Whole-brain imaging equipment. 2) Software and algorithms for neural identification, activity, and analysis. 3) Novel opportunities in whole-brain research (neuronal coding principles, multi-sensory integration, sensory-motor transformation, and the relationship between anatomical and functional connectivity).

1:00 Introduction and whole-brain imaging applications. Manuel Zimmer

1:10 Microscopy techniques. Francesco Randi (Andrew Leifer Lab)

1:20 Determining neuronal identity. Eviatar Yemini (Oliver Hobert Lab)

1:30 Algorithms and software to extract neurons and neural activity from recordings. Yu Toyoshima (Yuichi Iino & Takeshi Ishihara Labs)

1:40 Mathematical techniques for analyzing large ensembles of neural signaling. Harris Kaplan (Manuel Zimmer Lab)

1:50 Community resources for whole-brain imaging and analysis. Greg Bubnis (Saul Kato Lab)

2:00 General Discussion

Bridging the Physiologic Gap: Using *C. elegans* to Improve Human Skeletal Muscle Health

Organizers: Colleen Deane (University of Exeter) and Nathaniel Szewczyk (University of Nottingham)

The aim of this workshop is to increase the use of *C. elegans* as a model for physiology. We will outline cutting-edge approaches and potential solutions to the challenges in using *C. elegans* as a model for muscle physiological adaptations. Key discussion will revolve around employing outcome measures in *C. elegans* that are physiologically relevant to human muscle, navigating peer review by human muscle researchers, and opportunities to conduct spaceflight studies of *C. elegans* muscle.

1:00 Practicalities of sending *C. elegans* to space and the similarities of the worm’s adaptations to spaceflight and ageing. Atsushi Higashitani

1:20 Exercise training protocols and muscle adaptation in *C. elegans*. Ricardo Laranjeiro

1:30 Forward translating findings in *C. elegans* to improve human skeletal muscle health over the lifecourse. Colleen Deane

2:00 General discussion
Monday, June 24
9:00 a.m. – 11:53 a.m.
Royce Hall

Plenary Session 4
Session Chairs:
Shangbang Gao, Huazhong University of Science & Technology
Lizhen Chen, UT Health Science Center

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Speaker</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>191</td>
<td>9:00 The role and regulation of excitatory motor neuron oscillators.</td>
<td>Mei Zhen University of Toronto</td>
<td></td>
</tr>
<tr>
<td>192</td>
<td>9:30 Active propagation of dendritic electrical signals in a C. elegans chemosensory neuron.</td>
<td>Takashi Murayama OIST</td>
<td></td>
</tr>
<tr>
<td>193</td>
<td>9:42 C. elegans neurons have functional dendritic spines.</td>
<td>Andrea Cuentas Condori Vanderbilt University</td>
<td></td>
</tr>
<tr>
<td>194</td>
<td>9:54 Caenorhabditis elegans can use mechanosensation to help predict environmental collapse.</td>
<td>James Lee Calif Institute of Technology</td>
<td></td>
</tr>
<tr>
<td>195</td>
<td>10:06 pig-1 MELK-dependent non-random segregation of CES-1 Snail protein during NSM neuroblast division.</td>
<td>Hai Wei Ludwig-Maximilians-Universität</td>
<td></td>
</tr>
<tr>
<td>196</td>
<td>10:18 Cryptic asexual reproduction in Caenorhabditis nematodes revealed by interspecies hybridization.</td>
<td>Michael Ailion University of Washington</td>
<td></td>
</tr>
</tbody>
</table>

10:30 - **Break**

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Speaker</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>197</td>
<td>10:50 Temporal integration of transcription factors as a mechanism for neuronal diversification.</td>
<td>Luisa Cochella Institute of Molecular Pathology (IMP)</td>
<td></td>
</tr>
<tr>
<td>198</td>
<td>11:02 Sperm-inherited H3K27me3 impacts offspring transcription and development in C. elegans.</td>
<td>Kiyomi Kaneshiro UCSC</td>
<td></td>
</tr>
<tr>
<td>199</td>
<td>11:14 Transgenerational learned pathogenic avoidance is mediated by TGF-beta and the Piwi/PRG-1 Argonaute pathway.</td>
<td>Rebecca Moore Princeton University</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>11:26 Germ granules proteins control small RNA homeostasis transgenerationally.</td>
<td>Itai Toker Tel Aviv University, The George S. Wise Faculty of Life Sciences</td>
<td></td>
</tr>
<tr>
<td>201</td>
<td>11:38 The epigenetics of nematode mouth form plasticity.</td>
<td>Michael Werner Max Planck Institute for Developmental Biology</td>
<td></td>
</tr>
<tr>
<td>202</td>
<td>11:50 Closing Remarks, Julie Ahringer and Michael Koelle.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
203A The nucleoside diphosphate kinase NDK-1/NME1 promotes phagocytosis in concert with DYN-1/Dynamin. **Krisztina Takacs-Vellai** Eotvos Lorand Univ

204B Autophagy of germ-granule components, PGL-1 and PGL-3, contributes to DNA damage-induced germ cell apoptosis in *C. elegans*. **Ichiro Kawasaki** Konkuk Univ

205C Defects in the *de novo* pyrimidine biosynthesis pathway cause inappropriate cell survival in *C. elegans*. **Hang-Shiang Jiang** National Taiwan University

206A Genes that regulate the programmed cell deaths of the sisters of the RIM/RIC neurons. **Dongyeop Lee** MIT

207B The small GTPase RAB-35 leads a novel third pathway for apoptotic cell clearance. **Zheng Zhou** Baylor Col Med

208C The molecular mechanism of LCD, a prevalent and conserved non-apoptotic cell death program. **Olga Varychkivska** The Rockefeller University

209A Establishing *C. elegans* as a model for studying the biological effects of therapeutic ultrasound. **Louise Steele** Kent State University

210B Regulation of *Caenorhabditis elegans* primordial germ cell abscission. **Audrey Herrmann** IRIC, University of Montreal

211C Elucidating the Role of Securin in Regulating Separase during Cortical Granule Exocytosis. **Christopher Turpin** University of Tennessee

212A Permissive and instructive functions of LIN-39 during Pn.p cell proliferation. **Svenia Heinze** University of Zurich

213B Cortical imaging reveals dynamic distribution of cortical force modulators during asymmetric division of *C. elegans* embryos. **Alessandro Berto** EPFL SV ISREC UPGON

214C Cytoplasmic PLK-1 foci: a way to regulate PLK-1 function? **Simona Abbatemarco** University of Geneva

215A Regulation of cell cycle length in the early embryogenesis of *C. elegans*. **Manuela Kieninger** Wellcome Trust/Cancer Research UK, Gurdon Institute, University of Cambridge

216B Mixing of parental genomes after fertilization in *C. elegans* requires pronuclear membrane fusion that generates a novel membrane structure. **Mohammad Rahman** NIDDK at the National Institutes of Health

217C In vitro Analysis suggests that ZYG-1 Phosphorylates SAS-5 to control Centriole Assembly Outcomes. **Prabhu Sankaralingam** National Institute of Diabetes and Digestive and Kidney Diseases, NIH

218A Investigating Centriole Duplication during Spermatogenesis in *C. elegans*. **Po Jen Chen** National Taiwan University

219B Cytokinesis regulation is cell fate-dependent in *C. elegans* embryos. **Karina Mastronardi** Concordia University

220C Physiological control of *C. elegans* germline stem cell mitosis. **Abigail Gerhold** McGill University

221A Microtubule glutamylation aids cold and colchicine tolerance in *C. elegans*. **Nina Peel** TCNJ

222B The essential Plk1 function in centrosome remodeling during mitotic entry is not PCM expansion but γ-tubulin complex docking. **Midori Ota** Ludwig Institute for Cancer Research

223C Wnt Dependent Cell Fate Specification Requires Active SYS-1/β-Catenin Trafficking and Turnover at the Mitotic Centrosome. **Josh Thompson** University of Iowa
224A Investigating the role of the SWI/SNF chromatin remodeling complex in the differentiation of the invasive phenotype. Jayson Smith Stony Brook University

225B Regulation of ZYG-1/Plk4 levels by proteolysis. Jeffrey Medley Oakland University

226C Regulation of dynein-mediated forces during centrosome positioning and how it directs cell division. David Ignacio The Ohio State University

227A Site-Specific Phosphorylation of ZYG-1/Plk4 in Centrosome Assembly. Mi Hye Song Oakland Univ

Cell Biology - Cell Polarity

228B Aurora-A breaks symmetry in contractile actomyosin networks independently of its role in centrosome maturation. Fumio Motegi Temasek Lifesciences Lab

229C Cell polarity regulation by the mitotic kinase PLK-1 in C. elegans embryos. Ida Calvi University of Geneva

230A Interaction between pam-1 and wee-1.3 during embryonic development and oocyte maturation. Caprice Eisele Ursinus College

231B Polarization of organelles within intestinal epithelial cells. Greg Hermann Lewis & Clark College

232C The role of cortical polarity protein PAR-6 in larval epithelia. Victoria Castiglioni Utrecht University

233A The role of basolateral polarity regulators in epithelial tissue homeostasis. Amalia Riga Utrecht University

234B Apical-basolateral Polarity Establishment in the C. elegans Embryonic Intestinal Epithelium Occurs through Multiple Processes. Melissa Pickett Stanford University

235C Analysis of mechanisms underlying the metabotropic signal mediated by the Adhesion GPCR LAT-1 in oriented cell division. Lidia Duplice Rudolf Schönheimer Institute of Biochemistry

236A A Yeast two-hybrid screen identifies the galectin LEC-5 as a novel binding partner for RAB-11. Nan Zhang Jilin University

Cell Biology - Cytoskeleton and Migration

237B Squeezing larval P-cell nuclei through constricted spaces. Daniel Starr Univ California, Davis

238C Regulation of SUN-KASH interactions and microtubule motor choice at the nuclear envelope. Daniel Starr Univ California, Davis

239A Deciphering the functional network of FSGS-associated genes using C. elegans. Hoor Javed UIC College of Medicine

240B TXBP-3 regulates C. elegans cell adhesion and spermathecal contractility. Avery Lord Northeastern University

241C SOD-1 regulates the oxidative environment and contractility of the C. elegans spermatheca through RHO-1. Charlotte Kelley Northeastern University

242A A role for the puromycin-sensitive aminopeptidase PAM-1 in regulation of cortical dynamics. Andrew Belville Ursinus College

243B Regulation of the Ezrin-Radixin-Moesin protein ERM-1. Mike Boxem Utrecht Univ

244C Investigating the interaction between CED-2/CRKL and EGL-15/FGFR2 in cell migration and actin cytoskeleton function. Dovile Milonaityte University of Leeds

245A Strength training for neurons: investigating the peripheral neuronal cytoskeleton architecture. Dail Chapman Stanford University

246B An allele of Smr-9 suppresses pmr-1(ru5) cell migration defects. Yijun Xiong Grinnell College
247C Understanding kinetic delays in biological systems. Serena PRIGENT GARCIA Institute for Biology Paris-Seine

248A Roles of heparan sulfate proteoglycans in the development of polarized cells. Marianne BAH-TAHE Université du Québec à Montréal

249B Cell cycle and cytoskeletal dynamics during C. elegans muscle progenitor migration. Rebecca Adikes Stony Brook University

250C Components of the intestinal intermediate filament cytoskeleton in C. elegans provide important postembryonic protective functions. Florian Geisler Institute of Molecular and Cellular Anatomy, RWTH Aachen University

Cell Biology - Germline, Meiosis

251A The role of the C. elegans RMI2 orthologue in meiosis. Maria Velkova Max F Perutz Laboratories

252B An EMS mutagenesis screen identified both enhancer and suppressor mutants of him-18/slx4 in C. elegans. Takamune Saito Kindai University

253C Syndecan controls germline development by regulating Notch Receptor transcription. Sandeep Gopal Monash University

254A Analyzing Structural and Functional Changes of TOP-2 variants in C. elegans. Thomas Wilmoth University of Delaware

255B Conserved GRAS-1 is a novel regulator of the Synaptonemal Complex Assembly during meiosis of C. elegans. Marina Martinez Garcia Harvard Medical School

256C Characterizing Hect-family ubiquitin ligase during oocyte formation in C. elegans. Tammy Lu University of Calgary

257A Mechanism of 5′-tyrosyl-DNA phosphodiesterase 2 (tdpt-1) Mediated Suppression of DNA Topoisomerase 2 (top-2) during meiosis in C. elegans. Nirajan Bhandari University of Delaware

258B Novel separation-of-function mutants of the synaptonemal complex specifically disrupt alignment of homologous chromosomes during meiotic prophase. spencer Gordon University of Utah

259C The Vasa DEAD-box helicase GLH-1 promotes differential translation of sperm genes. Jesse Rochester The University of Maine

260A Recruitment of HR and NHEJ proteins to microirradiation-induced breaks in the C. elegans germline. Kailey Harrell University of Iowa

261B Investigating mechanisms of synaptonemal complex heat-sensitivity during Caenorhabditis elegans spermatogenesis. Cori Cahoon University of Oregon

262C Effect of bisphenol Z analogs on reproductive function of C. elegans. John Bowen Lawrence Technological University

263A Using fast-acting temperature-sensitive alleles to identify genes required for meiosis I anaphase. Austin Harvey University of Oregon, Molecular Biology

264B Mechanisms of sister chromatid repair during meiotic double-strand DNA break repair. Anna Horacek Institute of Molecular Biology

265C The HAL-2/HAL-3 complex controls homolog pairing and synapsis by regulating polo-like kinase activity during C. elegans meiosis. Baptiste Roelens Stanford University

266A CDK-1 controls meiotic chromosome dynamics through phosphorylation of the synaptonemal complex. James Brandt Johns Hopkins University

267B Investigating the Architecture of Meiotic Chromosome Pairing Centers. Kei Yamaya Stanford University
268C Identification and characterization of sperm components that have a role in controlling female meiosis II. **Rudra Banerjee** University of Alberta

269A Kinetochore Function During *C. elegans* Meiosis. **Brennan Danlsaky** UC Davis

270B Spindle Assembly Checkpoint Activation and Response in Male Meiosis. **Jonathan Amezquita** University of California, Davis

271C A targeted genetic screen to identify meiotic cohesion regulators. **Ali Ahsan** Cleveland State University

272A *C. elegans* BRC-1-BRD-1 is important for DSB repair choice in the male germ line. **Qianyan Li** University of California, Davis

273B Non-Mendelian Inheritance in *C. elegans*: a Violation of the Law of Independent Assortment. **Taylor Schilling** Cleveland State University

274C Do spindle checkpoint components and PCH-2 monitor chromosome movement to regulate and monitor synapsis? **Alice Devigne** University of California, Santa Cruz

275A Spermatogenic-specific proteins SMZ-1 and SMZ-2 regulate spermatogenesis in the nematode *Caenorhabditis elegans*. **Hsiao-Fang Peng** National Taiwan University

276B Male meiotic chromosome segregation is not subjected to rigorous checkpoint regulation. **Jui-ching Wu** National Taiwan University

277C Mitochondrial maturation drives germline stem cell differentiation in *C. elegans*. **Nikolaos Charmpilas** Institute of Molecular Biology and Biotechnology

278A Autophagy in Meiotic Fidelity. **Kaitlin Kosinski** Graduate Center, CUNY; Queens College, CUNY

279B Fndc-1 is ubiquitin-independent mitophagy receptor involved in paternal mitochondria elimination in *C. elegans*. **Yunki Lim** University of Rochester Medical Center

280C Germline specific roles of RPN-12, a 195 regulatory particle subunit of the 26S proteasome. **Lourds Fernando** Howard University

281A A role for epigenetic mechanisms in homologous chromosome recognition during meiosis. **Christine Doronio** Emory University

282B The multiple roles of the CCT chaperonin in regulating germ line RNP granules. **Elizabeth Breton** Central Michigan University

283C Investigating the regulation of ZHP-3 during meiotic recombination. **Anna Russo** University of California, Santa Cruz

284A Characterization of microtubule deglutamylylating enzyme function in the *C. elegans* germline. **Jessica Dominguez** TCNJ

285B The *C. elegans* Molting Timer NHR-23 is Repurposed in the Germline to Promote Spermatogenesis. **James Ragle** University of California Santa Cruz

286C Compromised Mating Ability and Reduced Sperm Transfer Explain Reduced Fertility in *C. elegans* Males at High Temperature. **Nicholas Sepulveda** Marquette University

287A Characterization of the meiotic double-strand break pathway. **Marilina Raices** U. Pittsburgh/ MWRI

288B The RNA-binding protein ETR-1 is needed during spermatogenesis to generate functional sperm. **Anna Allen** Howard University

289C Characterization of meiotic prophase I in a natural isolate of *Caenorhabditis elegans*. **Victoria Adler** University of Oregon

290A Characterizing the functions of the histone H3 kinase HASP-1 in *C. elegans*. **David Wynne** University of Portland

291B Chromatin remodeling mediates repair of DNA damage in *C. elegans* germ cells. **Nina Fassnacht** Marist College

292C SPE-36 is an EGF-motif containing secreted sperm protein required for
fertilization in *C. elegans*. Amber Krauchunas Rutgers, The State University of New Jersey

293A Trans-tissue signals from developing embryos instruct distant neurons to throw out their trash. Ryan Guasp Rutgers, The State University of New Jersey

294B Lipid droplet-associated proteins are required to build the eggshell permeability barrier in *C. elegans*. Giselle De La Torre Pinedo Pomona College

Cell Biology - Imaging Methods

295C COPAS VISION flow cytometer captures images and sorts. Francis Smet Union Biometrica

296A Degron-tagged reporters enable the specific labeling of membrane-wrapped objects and probe membrane topology. Ann Wehman University of Würzburg

297B What is your genetically-encoded biosensor good for? Julian Stanley Northeastern University

298C A Split-Scarlet fluorophore for endogenous protein labeling in *C. elegans*. Jérôme Goudeau Calico Life Sciences

299A Toward imaging the chromatin dynamics at specific loci in *C. elegans*. Bo Zhang UCSF

300B An improved image analysis pipeline for real-time quantification of *in vivo* protein oxidation mitigates movement-induced error. Sean Johnsen Northeastern University

301C Expansion microscopy of *C. elegans* enables whole-organism in situ analysis with nanoscale spatial resolution. Chih-Chieh (Jay) Yu Massachusetts Institute of Technology

302A Nanoscale structure and mechanics of skin in a *C. elegans* model of touch sensation. Ehsan Rezaei Stanford University

303B A Synthetic Auxin Analog and Microfluidics-Imaging Platform for High-Resolution Imaging of *C. elegans* L3 larvae. Michael Martinez Stony Brook University

304C A multi-feature probabilistic atlas for automatic cell identification in whole-body *C. elegans* recordings. Greg Bubnis University of California San Francisco

Cell Biology - Intracellular Trafficking and Organelles

305A Clearance of cell corpses and cell debris by LC3-associated phagocytosis. Gholamreza Fazeli University of Würzburg

306B The tempo of paternal mitochondrial transmission in *C. briggsae* hybrids. Joseph Ross California State University, Fresno

307C Anterograde bias in UNC-104 movement is potentially regulated by ubiquitination. Vidur Sabharwal Tata Institute of Fundamental Research

308A Investigating the role of SYD-2/Liprin-α in neuronal protein trafficking. Sravanthi Nadiminti Tata Institute of Fundamental Research

309B Regulation of synaptic vesicle transport at neuronal branch points *in vivo*. Amruta Vasudevan TIFR

310C Touch and dopaminergic neurons eject mitochondria under native and genetic stress conditions. Joelle Smart Rutgers

311A Mimicking Human Marfan and Marfan-like Syndrome Mutations Leads to Altered Trafficking of the Type II TGFβ Receptor in *C. elegans*. Mehul Vora Rutgers, The State University of New Jersey

312B Complex motility and drug response phenotypes associated with myopathic variants in the ryanodine receptor. Brittany Graham University of Leeds

313C The regulation of Rab activity in trafficking to gut granules. Greg Hermann Lewis & Clark College
314A Birefringent granules accumulate by the knock down of two p97/VCP homolog genes in the C. elegans intestinal cells. Takahiro Tanji Sch Pharmacy, Iwate Med Univ

315B Understanding the secretion mechanism of VAPB/VPR-1 MSP. Hala Zein-Sabatto University of Alabama at Birmingham

316C Functional characterisation of Joubert Syndrome associated CEP-41 and ARMC-9. Oktay Ismail Kaplan Abdullah Gul University

317A Determining the function of the kinase NEKL-4 in cilia. Katlin Power Rutgers University

318B A Disintegrin-containing Metalloprotease, ADM-2, is a suppressor of C. elegans NEK kinases. Sarina Bernazzani University of Wyoming

319C NEKL kinases are novel regulators of clathrin-mediated endocytosis. Braven Joseph University of Wyoming

320A Tetraspanins TSP-12 and TSP-14 function redundantly to promote the trafficking of the type II BMP receptor in Caenorhabditis elegans. Zhiyu Liu Cornell University

321B Proteomic analysis of SYM-3/FAM102A and SYM-4/WDR44 suggest functions in intracellular trafficking. David Fay University of Wyoming

322C A Conserved Retromer-Independent Function for RAB-6.2 in C. elegans Epidermis Integrity. Rachid El Bejjani Davidson College

323A Mutations in a cargo receptor protein and a COPII vesicle component suppress TRP-channel induced cell death. Lourdes Riquelme-Dominguez University of Edinburgh

324B Syndapin interacting proteins in recycling endosome function. Wilmer Rodriguez Rutgers University

325C Effects of ER stress on the glutamate receptor GLR-1 and ER-associated degradation using Caenorhabditis elegans. Janie Aguilera Western Washington University

326A Effects of Microtubule Glutamylation on Motor Localization and Function in Axons and Dendrites. Adam Zadeh Montclair State University

327B Probabilistic addition of mitochondria in the growing touch neuronal process identified using a long-term growth and imaging microfluidic device. Sudip Mondal University of Texas at Austin

328C Disruption of compartment specific superoxide dismutase results in differential rates of neuronal exophergenesis. Andrés Morera Rutgers University

Development - Cell Fate and Patterning

329A Genetic Dissection of Direct Cellular Reprogramming in vivo. Ismail Özcan Max Delbruck Center for Molecular Medicine

330B The impact of sumoylation on MRG-1’s role in germline safeguarding. Gülkiz Baytek Max Delbruck Center for Molecular Medicine

331C Dissecting centriole elimination during C. elegans embryogenesis. Nils Kalbfuss EPFL

332A Identification and characterization of maternal-effect genes involved in early embryonic development. Erica Li-Leger University of British Columbia

333B Regulation of embryonic cell fate decision by histone methylation. Juan Rodriguez Emory University

334C bHLH genes control cell fate in the sexually dimorphic somatic gonad. Sarah Finkelstein Columbia University

335A Transcriptional and post-translational mechanisms regulate HLH-2 to specify the anchor cell during C. elegans gonadogenesis. Justin Benavidez Columbia University

336B The MIG-15 MAP4 kinase Promotes Tertiary fate in VPC Patterning. Razan
Fakieh Texas A&M IBT

337C Wnt signaling antagonizes repression of germline genes in somatic cell nuclei of *C. elegans*. **Jerrin Cherian** Marquette University

338A Janus-faced proneural factors: neuronal fate drivers and cell killers. **Konstantina Filippopoulou** Institut de Biologie du Développement de Marseille, CNRS, Aix-Marseille University

339B Identification of novel genes in the lin-28/let-7 pathway. **Chun Li** BIDMC Cancer Center/Harvard Medical School

340C Unravelling the role of cell-cell contacts in regulation of seam cell divisions. **Janine Cravo** Utrecht University

341A Groucho corepressors function in Wnt-signalized asymmetric cell divisions. **Kimberly Bekas** University of Iowa

342B Towards identifying genes regulating multipotency and differentiation in the SGP/hmc cell fate decision. **Laura Mathies** Virginia Commonwealth University

343C Investigations on the Functional Residues and Proximal Interactome of Heterochronic Gene Product LIN-46. **Reyyan Bulut** University of Massachusetts Medical School

344A Developmental Regulation by *lin-28's* through its non-let-7 targets. **Madeleine Minutillo** Rowan University

345B A novel repeat-containing protein supports male and female reproduction in *C. elegans*. **Sun-Kyung Lee** Hanyang University

346C Patterning of the extracellular matrix: formation of cuticle struts by BLI collagens. **Jennifer Adams** University of California, San Diego

347A Control of transcription rates in the *Caenorhabditis elegans* embryo. **Priya Sivaramakrishnan** University of Pennsylvania

348B *cnd-1/NeuroD1* controls transcription of multiple genes required for nervous system development and function. **Martin Hudson** Kennesaw State University

Development - Differentiation and Plasticity

349C A pseudogene going astray: *F55A3.7* is a novel non-coding RNA and acts as a transdifferentiation inhibitor in the germline. **Andreas Ofenbauer** Berlin Institute for Medical Systems Biology (BIMSB) at Max Delbrueck Center (MDC)

350A Developing a large-scale method for bulk segregant analysis of genetic variation underlying differential requirements for *SKN-1* in endoderm specification. **Geneva Alok** University of California, Santa Barbara

351B Characterizing the gonad-enriched transcripts in *Caenorhabditis elegans*. **Mary Kroetz** University of South Alabama

352C Determining the role of *ztf-16* in regulating cell fate in stem cell-like cells after quiescence. **Mark Hansen** Central Michigan University

353A Probing the mechanisms of cellular plasticity via ELT-7-mediated transdifferentiation. **Tsunghan Yeh** University of California Santa Barbara

354B A natural transdifferentiation event involving mitosis is empowered by integrating signaling inputs with conserved reprogramming factors. **Claudia Riva** IGBMC Gie CERBM

355C Robustness of the neuronal specification programs. **Fabien Soulavie** Aix-Marseille Université

356A The role of *DEX-1* in dauer-specific locomotion behaviors. **Kristen Flatt** University of Illinois at Urbana-Champaign

357B Investigating the transcription activation of *HLH-8* in *C. elegans*. **Michael Gruss** Catholic University of America

358C *daf-16* blocks expression of *let-7*-family microRNAs to promote multipotent cell fate during dauer. **Allison Cale** Central Michigan University
359A Maternal Ribosomes Are Sufficient for Tissue Diversification during Embryonic Development in C. elegans. **Elif Sarinay Cenik** University of Texas at Austin

Development - Germline Development

360B ERK is active in *C. elegans* proliferative germline stem cells. **Benjamin Dufour** Université du Québec à Trois-Rivières

361C Identification of new genes required for feedback regulation of stem cell proliferation in *C. elegans*. **Benjamin Dufour** Université du Québec à Trois-Rivières

362A Decoding Transcriptional Control of Germline Development in *C. elegans*. **Wei Cao** Monash University

363B Analysis of the PAF1 complex during oogenesis. **Natsumi Ota** Ritsumeikan University

364C Developmental regulation of germline syncytium organization in *C. elegans*. **Jack Bauer** Institut de recherche en cancérologie et immunologie

365A RAS/MAP kinase-induced apical constriction promotes physiological germ cell death. **Tea Kohlbrenner** University of Zürich

366B Dietary regulation of germline apoptosis. **Ana Laranjeira** Institute of Molecular Life Sciences

367C Modelling Genetic Diseases of PIEZO Dysfunction in *C. elegans*. **Xiaofei Bai** National Institutes of Health

368A Sexual dimorphism of niche architecture and regulation of the *C. elegans* germline stem cell pool. **Sarah Crittenden** Univ Wisconsin, Madison

369B A four-part PUF hub is responsible for germline stem cell self-renewal throughout *C. elegans* development. **Kimberly Haupt** University of Wisconsin-Madison

370C GVD-1, a novel protein, is essential for the development of vulva and the germline. **Anbalagan Pon Ezhi Buvani** Indian Institute of Technology Kanpur

371A DAF-18/PTEN links germline stem cell proliferation to oocyte needs by preventing the ovulation of unfertilized oocytes. **Patrick Narbonne** Université du Québec à Trois-Rivières

372B Post-transcriptional regulation of the germline RNA-binding protein MEX-3 in *Caenorhabditis elegans*. **Mennatallah Albarqi** University of Massachusetts Medical School

373C A role for the DREAM complex in the regulation of germline apoptosis. **Frances Compere** Marquette University

374A Investigating RACK-1’s role in regulating stem cell proliferation in the *C. elegans* germline. **Kara Vanden Broek** University of Calgary

375B Investigating the role of the dynein motor in the activation of the MAP kinase pathway. **Emily Osterli** University of Montana

376C Determining the mechanism of attachment of the *C. elegans* germline stem cell niche, the distal tip cell. **Lauren McMillan** University of Calgary

377A Identifying the binding partners and functional motifs of GLH-1 and LOTR-1 in *C. elegans*. **Dustin Updike** Mount Desert Island Biological Laboratory

378B Regulation of GLP-1/Notch signaling in *C. elegans* Germline Stem Cells by Protein Interactions. **Xue Han** University of Calgary

379C PUF-8 and its repressing target GLD-2 can either promote or inhibit the differentiation of spermatogenic germ cells, depending on gene dosage in the *Caenorhabditis elegans*. **Youngyong Park** East Carolina University

380A A secreted immunoglobulin domain-containing protein, SPE-51, is required for sperm function at fertilization. **Xue Mei** Waksman Institute of Microbiology
381B MIG-6 C-term PLAC domain acts to dampen glp-1/Notch signalling. Patrick Narbonne Université du Québec à Trois-Rivières

382C The Unfolded Protein Response inhibits GLP-1/Notch signalling associated germine stem cell proliferation. Ramya Singh University of Calgary

383A plp-1 is required for germ cell development and transgene silencing in the germline. Vishnupriya Rajaram Indian Institute of Technology Madras

384B The role of zinc signaling in sperm activation of Caenorhabditis elegans. Chieh-Hsiang Tan Washington University in St. Louis

385C C. elegans mRNA cap-binding proteins IFE-1 and IFE-3 have divergent roles in germ cell development. Hayden Huggins East Carolina University

386A Redundant Mechanisms of X-Chromosome Repression in the C. elegans Male Germline. Braden Larson University of California, Santa Cruz

387B Microtubule motors and MEL-28 interact in the oogenic germline to influence fertility. Anita Fernandez Fairfield Univ

388C Four new members of the sperm activation pathway. Craig Lamunyon Cal Poly Pomona

389A Two sperm gene paralogs that are not functionally redundant. Craig Lamunyon Cal Poly Pomona

390B Sphingolipids/ceramides are Localized to Embryonic P Granules and have a Role in Germline Senescence in Caenorhabditis elegans. Skylar King University of North Texas

391C MicroRNA depletion results in Notch loss of function phenotypes and loss of stem cell totipotency. Erika Sorensen Wabash College

392A Regulation of lin-35/Rb gene expression during fasting in adult animals. Alan Gonzalez Rangel Instituto de Fisiología Celular

393B Mitochondria aggregation could affect stress granules formation in the C. elegans gonad. Gisselle Campo-Martínez Instituto de Fisiología Celular

394C GCNA preserves genome integrity and fertility across species. Victoria Veroli U. Pittsburgh/MWRI

395A The Period protein homolog LIN-42 regulates germline development in C. elegans. Skyler Berardi Colgate University

396B Different sensory neurons modulate distinct steps in oogenesis in response to food quality. Shashwat Mishra Wayne State University

397C Exploring the effects of reduced germine proliferation on oogenesis. Julia Burnett Amherst College

Development - Morphogenesis

398A The excretory canal as a platform to discover kinase regulators of tubulogenesis and angiogenesis. Alexandra Socovich University of Illinois at Chicago

399B Creating a pan-nuclear atlas in the post-twitching Caenorhabditis elegans embryo. Ryan Christensen National Institutes of Health

400C cdc-25.2 regulates spermathecal development and its expression is activated by fkh-6 and nhr-6 in Caenorhabditis elegans. Yhong-Hee Shim Konkuk Univ

401A The role of protein sumoylation during vulval morphogenesis and anchor cell invasion. Aleksandra Fergin University of Zürich

402B A screen for temperature-sensitive morphogenesis-defective mutants. Molly Jud University of Oregon

403C Toward an EM Time Series: Automated Cell Identification in a Developmental Context. Anthony Santella Sloan Kettering Cancer Center
404A Genetic and physical coordination on early embryogenesis of Caenorhabditis elegans. Guoye Guan Peking University

405B Cell lineage dependent chiral flows at the actomyosin cortex drive cellular rearrangement in early development. Lokesh Pimpale TU - Dresden / MPI - CBG

406C UNC-89 Protein Kinase Activity is Required for Normal Mitochondrial Morphology and Function. Hiroshi Qadota Emory Univ

407A Comparative Transcriptomics of heads and tails between Steinernema carpocapsae and Caenorhabditis elegans. Isaryhia Rodriguez University of California Irvine

408B Structure and assembly of C. elegans’ pre-cuticular apical extracellular matrix. Meera Sundaram Univ Pennsylvania Sch Med

409C The C. elegans heterochronic gene lin-28 coordinates the timing of hypodermal and somatic gonadal programs for hermaphrodite reproductive system morphogenesis. Sungwook Choi UMass Medical School

410A Multi-tissue patterning drives anterior morphogenesis in the C. elegans embryo. Stephanie Grimbert Concordia University

411B Elucidating the gene regulatory network controlling male tail tip morphogenesis in C. elegans via ChIP-seq and tissue-specific transcriptomics. Karin Kiontke New York Univ

412C Branched actin regulates endosomal transport of Cadherin to maintain apical/basal polarity. Martha Soto Rutgers - RWJMS

413A EXC-9 interacts with EXC-2/IFC-2 to signal to endosomal recycling machinery. Zhe Yang University of Kansas

414B Dissecting the transcriptional regulation of cell invasion in vivo. Taylor Medwig-Kinney Stony Brook University

415C Mechanical functions of eggshell in C. elegans development. Akiko Hatakeyama RIKEN

Development - Sex Determination

416A Regulation of the tra-1/Gli master regulator of sex determination. Emily Bayer Columbia University

417B Germline regulation of tra-2 mRNA. Lauren Skelly University of Maryland, College Park

418C The mir-44 family of microRNAs regulates the sperm/oocyte switch in C. elegans hermaphrodites. Katherine Maniates Marquette University

420B C. briggsae TRA-2 acts through TRA-1 to prevent spermatogenesis. Yongquan Shen Rowan-SOM

421C Control of C. briggsae germline development by TRA-1-interacting cofactors. Satheeja Santhi Velayudhan Rowan University SOM

422A Sex-determination in the male/female species C. nigoni. Jonathan Harbin Rowan SOM

Development - Signaling Pathways in Development

423B KIN-1/PKA affects calcium signaling and actomyosin contractility in the C. elegans spermatheca. Perla Castaneda Northeastern University

424C Interacting TALE Hox cofactors regulate vitellogenesis. Pieter Van de Walle KU Leuven

425A Axin-like scaffolding protein PRY-1 regulates lipid metabolism and lifespan in C. elegans. Avijit Mallick McMaster University
426B A toolkit for analyzing the role of heterotrimeric G-protein-Rho/Rac signaling, and its regulation by EXC-4/CLIC, in the excretory canal cell. **Julianna Escudero** University of Illinois at Chicago

427C Functional cross-antagonism between opioid and pheromone signaling in stress avoidance in *Caenorhabditis elegans*. **Jun Young Park** Yonsei University

428A G-protein alpha subunit, GOA-1, is a regulator of contraction and relaxation in the *C. elegans* spermatheca. **Hannah Pettit** Northeastern University

429B FAX-1 Interneurons and Insulin Signaling Regulate Arousal and Quiescence. **Katarina Liberatore** Muhlenberg College

430C The Effects of DAF-16/FOXO Translocation on Quiescent Peri-Hatching Arrest in Caenorhabditis elegans. **Evan Schlesinger** Muhlenberg College

431A SAX-7/L1CAM genetically interacts with LET-60/RAS to promote proper vulval development and viability. **Michael Waltman** University of Minnesota

432B Activation of *C. elegans* Notch does not require ubiquitination of the ligand intracellular domain or Epsin function. **Jessica Chan** Columbia University

433C A novel mutation in NPXY motif of β integrin reveals a unique phenotype linked to *him-4/hemicentin*. **Zhongqiang Qiu** Baylor University

434A HSP90 co-chaperones promote GLP-1/Notch signaling in *C. elegans*. **James Lissemore** John Carroll University

435B The role of Wnt signaling in *C. elegans* embryonic development and gene regulation. **Amanda Zacharias** Cincinnati Children’s Hospital Med Ctr

436C Understanding the convergence of *ccm-3* and *kri-1* signaling in *C. elegans*. **Samuel Krempel** University of Toronto

437A Characterization of blocks to EGFR signal transduction in quiescent Vulval Precursor Cells during *C. elegans* dauer development. **Catherine O’Keeffe** Columbia University

438B A rapid-response sensor for LIN-12/Notch activity. **Justin Shaffer** Columbia University

439C Multiple regulatory mechanisms control expression of the LIN-31/FOX8 transcription factor. **Qi Zhang** Institute of Bioscience and Technology

440A SRC-1 is the negative regulator of UNC-5 in the Polarity/Protrusion model of directed growth cone outgrowth. **Snehal Mahadik** University of Kansas

441B Wnt-dependent clustering and dual site of action of CAM-1/Ror2 in Q neuroblast migration. **Christa van der Veen** Hubrecht Institute

442C Characterization of an insulin/IGF-1 signaling pathway in the parasitic nematode *Brugia malayi*. **Kirsten Crossgrove** Univ Wisconsin, Whitewater

443A The search for additional proteins that physically associate with the LIM-7 transcriptional complex. **Vidia Ramadin** Hofstra Univ

444B Proteomic study of *Caenorhabditis elegans* Excretory-secretory products (ESP) shows conserved genes groups responding to environmental signals. **Wen Chen** California Institute of Technology

445C Early-life exposure to the lifespan-extending compound ThioflavinT results in severe developmental delay in *C. elegans*. **Alex de Verteuil Yeboah** Institute of Ecology & Evolution

446A The role of MRCK-1 in excretory canal development. **Evelyn Popiel** University of Toronto

447B Identifying novel genetic and physical DBL-1/TGF-β pathway interactors in *Caenorhabditis elegans*. **Mohammed F. Lakdawala** Texas Woman’s University
448C The role of APL-1, a C. elegans APP ortholog, in developmental regulation. Ji-Sup Yang City College of New York

449A A genetic screen to identify new FGFR signaling components. Victoria Puccini de Castro Northeastern Illinois University

450B Regulatory mutations could lead to aberrant TRA-1 activator function in somatic tissues. Shin-Yi Lin Rowan University-SOM

451C Tissue Specificity of The DAF-7/TGFbPathway in Affecting Sperm Guidance. Muhan Hu University of Alabama at Birmingham

452A LIN-2/7/10 complex revisited: Complex-independent function of LIN-10 and LIN-7 in LET-23 EGFR signaling. Kimberley Gauthier McGill University

453B Deciphering how a mutation in W04A8.6 functions in Wnt signaling. Hamida Safi Simon Fraser University

454C A novel role for N-terminal acetylation in larval development mediated by the NIPI-3 Tribbles pseudokinase. Rose Malinow University of California, San Diego

Ecology and Evolution - Ecology, Biotic Interactions, Chemical Signaling

455A One odor, two behaviors: Prenol elicits repulsion and dispersal in parasitic nematodes. Kassandra Kin University of California Riverside

456B Discovery of vertically transmitted RNA molecules encoding viral RNA-dependent RNA polymerase in Caenorhabditis nematodes. Aurélien Richaud Institute of Biology ofENS

457C Microbiome-associated tradeoffs between life history traits and stress resistance. Samuel Slowinski UC Berkeley

458A Genetics screens identified npa-1 and cwp-5 play a role in inducing trap-morphogenesis in the nematode-trapping fungus Arthrobotrys oligospora. Ching-Wen Chang Institute of Molecular Biology

459B Role of antimicrobial proteins in shaping Caenorhabditis elegans microbial associations. Barbara Pees Zoological Institute

460C Preconditioning with natural microbiota bacteria can directly influence C. elegans behavior. Carola Petersen Zoological Institute

461A Extremophile nematodes from Mono Lake demonstrate adaptation to an arsenic-rich environment. Pei Shih Calif Institute of Technology

462B UDP-Glycosyltransferases in Caenorhabditis elegans: Insights into Roles in Xenobiotics Detoxification. Olatomiwa Bifarín The University of Georgia

463C Prey-sensing requires G protein signaling and is a highly polymorphic trait in natural populations of nematode-trapping fungi. Yen-Ping Hsueh Academia Sinica

464A Insulin signaling drives Caenorhabditis elegans microbiome acquisition. FAN ZHANG Baylor College of Medicine

465B Absence of pheromone signal reduces Steinernema feltiae dispersal. Fatma Kaplan Pheronym, Inc.

466C A nematode model for territoriality. Kathleen Quach Salk Institute

467A Evidence for a selective sweep associated with a variant of a gene involved in Bt toxicity in natural C. elegans isolates. Joanna Bundus University of Wisconsin-Madison

468B Genetic control of Enterobacter commensal abundance and function in C. elegans. Michael Shapira UC Berkeley

469C Ascaroside signaling in Caenorhabditis remanei encodes the growth phase of its bacterial food source. Stephan von Reuss University of Neuchatel
Ecology and Evolution - Evo-Devo, Evolution of Mating Systems

470A Comparative neurotransmitters and neuronal specification in the satellite model organism nematode *Pristionchus pacificus*. **Curtis Loer** Univ San Diego

471B Sensitivity of QR.pax position to body size underlies its evolution in *C. elegans*. **Clément Dubois** Institut de Biologie de l’ENS

472C The role of developmental genetic architecture in shaping evolutionary trends. **Joao Picao Osorio** IBENS

473A Identification of GEF ect-2/ect2 as a novel conserved cell fate specifiers of PNS precursors. **Yongbin Li** School of Life Sciences, Tsinghua University

474B Early embryogenesis of *C. inopinata*, a sibling species of *C.elegans*. **Shun Oomura** Tohoku University

475C A genetically divergent *C. elegans* wild isolate exhibits extremely high male frequency. **Gaotian Zhang** Northwestern University

Ecology and Evolution - Evolution of Complex Traits, Quantitative Genetics

476A Selection and gene flow shape niche-associated copy-number variation of pheromone receptor genes. **Daehan Lee** Northwestern University

477B Experimental validation of benzimidazole-resistance alleles and mechanisms using quantitative assays of Caenorhabditis elegans. **Clayton Dilks** Northwestern University

478C Extreme allelic heterogeneity at a Caenorhabditis elegans beta-tubulin locus explains natural resistance to benzimidazoles. **Stefan Zdraljevic** Northwestern University

Ecology and Evolution - Experimental Evolution and Ecology

479A Natural genetic variation in chemical communication of C. elegans. **Daehan Lee** Northwestern University

480B A novel migratory behavior of *Caenorhabditis elegans* dauer larvae in response to high pressure. **Caroline Ackley** University of California, Santa Barbara

481C Using polarity establishment through *par* genes as a model to study the evolution of complex processes. **Samiksha Kaul** Georgia Institute of Technology

482A Natural variation in WAH-1/AIF regulates the response to prolonged oxidative stress in *Caenorhabditis elegans*. **Maria Mercado** University of Toronto

483B Identifying natural variants in alcohol sensitivity with genome-wide association in *C. elegans*. **Benjamin Clites** University of Texas at Austin

484C High throughput assessment of natural variation in the response to adult starvation in *C. elegans* using microfluidics. **Heather Archer** University of Oregon

485A When to protect your master: Evolution of microbe-mediated protection. **Anke Klock** Oxford University

486B Investigating the Effects of Microgravity on the Neuromuscular Junction in *C. elegans*. **Alfredo Jr. Alcantara** Yonsei University

487C Testing local CRISPR gene drives using *C. elegans*. **Stephen Von Stetina** MIT

488A Stayin’ alive in a worm population – a system biology approach to aging. **Andrea Scharf** Washington University in Saint Louis

489B Mathematical modeling of Orsay virus disease ecology in *Caenorhabditis elegans*. **David Kennedy** Penn State University
490C Evolution of noise and phenotypic plasticity with relaxed selection in *Caenorhabditis elegans*. Ayush Saxena University of Florida

499C Identifying Molecular Mechanisms Underlying Hybrid Incompatibility in the *Caenorhabditis* genus. Jessica Bloom University of California, San Diego

Ecology and Evolution - Phylogeny and Diversification

491A The function of meiosis I genes in the parthenogenic nematode *Diploscapter pachys*. George Chung New York University

492B Divergence in DNA binding of *C. elegans* endoderm-specific GATA-type transcription factors. Antonia Darragh University of California San Diego

493C Genetics of chromosome-X nondisjunction rate variation in *C. elegans*. Tzitziki Lemus Vergara University of California Los Angeles

494A Spontaneous mutational variation in metabolic network enzyme activity in *C. elegans*. Lindsay Johnson University of Florida

495B Natural variation of *C. elegans* short tandem repeats. Ye Wang Northwestern University

496C Mode of reproduction drives the distribution of polymorphism across the genome: theory and empirical tests in *Caenorhabditis* nematode. Patrick Phillips University of Oregon

Gene Regulation and Genomics - Databases and Programs

497A Identification of an X-linked hybrid lethal gene in *Caenorhabditis briggsae*. John Kelly Dougherty Wright State University

498B A small conserved membrane protein is required for PEEL-1 toxicity. Galen Posch University of Washington

500A miRToolsGallery: a microRNA bioinformatics resources database portal. Garry Wong University of Macau

501B How many strains does it take to get to the center of a QTL? Priscila Robles University of California, Riverside

502C Systematic capture of *C. elegans* protein function in UniProtKB and the Complex Portal databases. Hema Bye-A-Jee EMBL-EBI

503A Supporting nematode research outside of *Caenorhabditis*. Michael Paulini EMBL-EBI

504B Exploring helminth gene expression data using WormBase ParaSite. Faye Rodgers Wellcome Sanger Institute

505C Data-driven analysis of female pronuclear migration by image-processing embryonic movies in Phenobank. Yukako Tohsato Ritsumeikan University

506A WormCat: an online tool for categorizing and visualizing gene set enrichments from expression profiling and phenotypic screening data. Amy Walker UMass Medical School

507B Creation of a Database of *C. elegans* Orthologs for Human Rare Disease Genes. Isabella Zafra Martinez NIH

508C Genome Browsing at WormBase. Scott Cain Ontario Institute for Cancer Research

509A New design and Improvement of Worm Developmental Dynamics Database (WDDD). Hiroya Itoga RIKEN
Gene Regulation and Genomics - Epigenetics

510B Epigenetic changes in stress related genes correlated with pH stress. Jonathan Karpel Southern Utah Univ

511C Characterization of the histone chaperone LIN-53 during reprogramming and aging in C. elegans. Iris Marchal Max Delbruck Center for Molecular Neuroscience

512A Dissecting the epigenetic mechanisms of environmental memory and transgenerational reproductive dysfunction in C. elegans. Patrick Allard UCLA

513B T07A9.8 is required for the m1A modification at position 674 in 26S rRNA in C. elegans. Keiko Hirota Tokyo Women's Medical University

514C Transgenerational effects of extended dauer diapause on starvation survival and gene expression plasticity in C. elegans. Amy Webster Duke University

515A SPR-5;MET-2 maternal reprogramming antagonizes H3K36me3 in the control of germline versus soma. David Katz Emory Univ

516B H3.3K27M-induced chromatin changes drive ectopic replication through misregulation of the JNK pathway. Florian Steiner University of Geneva

517C Bioorthogonal RNA labelling in Caenorhabditis elegans. Natalya Frolows University of Sydney

518A Transgenerational Epigenetic Silencing of Sid-1. Nicole Bush Harvard University

519B The effect of age on epigenetic transgenerational reprogramming in C. elegans germline. Onur Birol Emory University

520C JMJD-5/KDM-8 safeguards germline immortality at high temperatures. Nico Zaghet BRIC University of Copenhagen

521A Efficacy of small RNA-mediated silencing of PATC-rich transgenes in the germline. Monika Priyadarshini King Abdullah University of Science and Technology

522B Tissue-specific ChIP-seq reveals distribution of cell type-specific histone variants. Idris Bulut Max-Delbrück-Centrum for Molecular Medicine (MDC)

523C Untangling the role of H3K9me3 in transgenerational small RNA inheritance. Itamar Lev Tel-Aviv University

524A Epigenetic recovery from transgenerational RNA silencing in the C. elegans germline. Mary Chey University of Maryland

525B COMPASS mediates Transgenerational Epigenetic Inheritance of Histone 3 modifications in Caenorhabditis elegans. Rosamund Clifford University of Leeds

526C Proteomics study of chromatin-associated molecules during Caenorhabditis elegans response to pathogen infection. Chunlan Hong Oregon Health & Science University

527A Extended dauer diapause triggers stable epigenetic inheritance in Caenorhabditis elegans endoderm gene regulatory network. Ethan Ewe University of California, Santa Barbara

528B Investigating the roles of histone demethylase LSD1/2 homologs in germline DNA damage repair. Hyun-Min Kim TianJin University

529C Chromatin modifiers SET-25 and SET-32 establish a transgenerational silencing signal in Caenorhabditis elegans. Rachel Woodhouse University of Sydney

530A The role of set-9 and set-26 in transgenerational epigenetic inheritance in Caenorhabditis elegans. Dhruv Monteiro The University of Sydney

531B Epigenetic Sensitivity to Chemical Exposure in the Aging C. elegans Germline. Rio Barrere-Cain University of California Los Angeles

532C Transgenerational epigenetic inheritance is revealed as a multi-step process
by studies of the SET-domain proteins SET-25
and SET-32. **Alyson Ashe** University of Sydney

533A Heterochromatin formation in embryogenesis. **Andrea Frapporti** The Gurdon Institute, University of Cambridge

534B Investigating the molecular mechanisms of SET-24 in the *C. elegans* germline. **Giulia Furlan** University of Cambridge

535C Dissecting the molecular mechanisms by which mutation of the SWI/SNF chromatin remodeling complex drives cell over-proliferation. **Lisa Lampersberger** University of Cambridge

536A Transgenerational effects of early-life arsenic exposure on mitochondrial function in *C. elegans*. **Kathleen Hershberger** Duke University

537B Evaluating microcystin-LR induced transgenerational toxicity. **Caroline Moore** UC Los Angeles

538C Examining the transgenerational effects of environmental cues in *C. elegans*. **Lisa Truong** University of California, Los Angeles

539A Features of histone H2A variant HIS-35 incorporation before and after fertilization. **Wesley Huang** San Francisco State University

540A *C. elegans* alters mating strategies based on developmental history. **Rose Al-Saadi** Syracuse University

541C Illuminating gene regulatory roles of the sperm specific histone variant, HTAS-1. **Jesus Hinojosa Paiz** San Francisco State University

542A Polyphenols promote neurite outgrowth elongation in neuroblastoma cells and extends the lifespan in *C. elegans* via histone acetylation. **Takamitsu Natori** University of California San Diego

543B PIE-1, HDAC and SUMO Regulate genome integrity and piRNA-dependent silencing at the transition from mitosis to meiosis. **Yuehe Ding** RNA Therapeutics Institute

Gene Regulation and Genomics - Gene Regulation

544C Tissue-Specific Gene Regulation in *C. elegans*. **Deema Alhusari** UBC-CMMT

545A Wide-spread non-canonical caspase activities regulate gene expression dynamics including antagonizing p38 MAPK pathogen response to support cell vigor and development. **Benjamin Weaver** UT Southwestern Medical Center

546B Transcriptome analysis of MRG-1-deficient animals using long read sequencing. **Alexander Gosdschan** Max-Delbrueck-Centrum

547C Identifying novel regulators of endogenous DLK-1 expression. **Yue Sun** University of California San Diego

548A Further investigation into the ESRE network – a novel pathway for mitochondrial surveillance. **Elissa Tjahjono** Rice University

549B Stage-specific gene expression in the larval stages of *Caenorhabditis angaria* for comparative transcriptomic analysis of *Caenorhabditis* development. **Kevin O’Leary** UC Irvine

550C Specificity of long-range interactions between DCC recruitment sites in *C. elegans*. **Bhavana Ragipani** New York University

551A Modeling of SF3B1 cancer-related missense mutations in *C. elegans* uncovers potential targets for synthetic lethality. **Xènia Serrat** IDIBELL

552B Cooperation of histone modifications and nuclear architecture in dosage compensation. **Jessica Trombley** University of Michigan

553C 3’ UTR mediated translational regulation of *glp-1* in the germline of *Caenorhabditis elegans*. **Peren Coskun** University of Massachusetts Medical School
554A Highly efficient genome editing strategy for new null mutant using “STOP-IN” CRISPR/Cas9. Heenam Park California Institute of Technology

555B Manipulation of Genetic Regulation by Nucleosome Positioning. John Carter Brigham Young University

557A Genome-Wide Kinetic Analysis of pre-mRNA Processing in C. elegans. Eichi Watabe Tokyo Medical and Dental University

558B Regulation of DNA repair pathway to ensure gamete quality. Aidan Nowakowski Marist College

559C NHL-2, a versatile player in RNA biology of C. elegans. Joshua Anderson Monash University

560A Germline expression of mpk-1b: a possible regulatory role for the large first intron. Sarah Robinson University of Wisconsin-Madison

561B The subcellular localization of asymmetrically distributed mRNA transcripts during Caenorhabditis elegans early embryogenesis. Erin Osborne Nishimura Colorado State University

562C PES-4 regulates head-muscle-specific alternative splicing of the tropomyosin pre-mRNA. Hidetoshi Kuroyanagi Tokyo Med & Dental Univ

563A Timekeeping in cell migration: the role of QR.p division in regulating mig-1 expression. Erik Schild Hubrecht Institute

564B An intestinal gene-centered cofactor regulatory network. Brent Horowitz University of Massachusetts Medical School

565C Full-length analysis of Caenorhabditis elegans transcriptome using Nanopore sequencing technology. Florian Bernard IECB

566A Regulation of anterior genes in the C. elegans embryo. Jonathan Rumley University of Pennsylvania

567B Transcription factors involved in dauer formation under pathogenesis identified by analysis of knowledge-based networks. Carolaing Gabaldon universidad mayor

568C Genetic robustness via mutant mRNA decay and transcriptional activation of a compensatory gene. Vahan Serobyan Max Planck Institute for Heart and Lung Research

569A Optimization of CUT&RUN for transcription factor profiling in C. elegans. Alexander Sinks Davidson College

570B Integration of gene regulatory and metabolic networks. Sushila Bhattacharya University of Massachusetts Medical School

571C Investigating Tissue-Specific Alternative Splicing in C. elegans. Pallavi Pilaka University of Toronto

572A NHR-14 loss of function couples intestinal iron uptake with innate immunity in C. elegans through PQM-1 signaling. Malini Rajan University of Utah

573B Investigating genetic interactions between neuronal transcription factors and RNA binding proteins. Morgan Thompson Southern Methodist University

574C Quantifying the relationship between niche contact and the Notch-dependent transcriptional response in C. elegans germline stem cells. Theadora Tolkin Skirball Institute for Biomolecular Medicine

575A The nuclear receptor HIZR-1 regulates HLH-30 to promote lysosome remodeling during high zinc homeostasis. Ciro Cubillas Washington University School of Medicine

576B Widespread Roles for piRNAs and siRNAs in Shaping the Germline Transcriptome. Kailee Reed Colorado State
University

577C Study of small RNA-mediated gene regulation in C. elegans germline using single-molecule microscopy. **Yuchen Yang** UMass Medical School

578A Identification of transcriptional regulators impacted by a glucose-supplemented diet in C. elegans. **Jose Robledo** University of North Texas

579B 5′ modified DNA donors for precision genome editing. **Krishna Ghanta** University of Massachusetts Medical School

580C The Doubletime homolog KIN-20 mainly regulates let-7 independently of its effects on the Period homolog LIN-42 in C. elegans. **Kyle Rhodehouse** Colgate University

581A FOS-1 represses ODD-2 expression in the germline of C. elegans. **Amy Groth** Eastern Connecticut University

582B Dissection of the NHR-25 transcriptional landscape reveals distinct roles for the regulatory element and transcription factor in target gene regulation. **Deborah Thurtle-Schmidt** Davidson College

583C The mir-269 functions in two different neurons to regulate distinct behaviors. **Konstantinos Kagias** Department of Organismic and Evolutionary Biology

584A ZTF-17 regulates the expression of detoxification genes in the oxidative stress response. **Cindy Tran** York University

Gene Regulation and Genomics - Genomics

585B CB4856 Genome version 2.0: Long-read sequencing reveals intra-species tolerance of substantial structural variations and new subtelomere formation in C. elegans. **Junho Lee** Seoul National University

586C Autism-associated missense variants impact locomotion and neurodevelopment in Caenorhabditis elegans. **Sandy Wong** California Institute of Technology

587A C. elegans Strains and Variations in WormBase and the Alliance of Genome Resources. **Paul Davis** European Bioinformatics Institute (EMBL-EBI)

588B The Limits of DNA influence on Chromatin Organization. **Davis Garner** Brigham Young University

589C Using CRISPR/Cas9 methodology for efficient generation of deletions in C. elegans. **Mark Edgley** University of British Columbia

590A Examining transcription dynamics at the single molecule level in individual promoters. **Bolaji Isiaka** University of Bern

591B Dynamics of epistatic interactions in Caenorhabditis elegans under heat shock stress. **Katarzyna Toch** Jagiellonian University

592C Identifying and characterizing novel targets for anthelmintic development in C. elegans. **Vinci Au** University of British Columbia

593A Optimization of CRISPR/Cas9 mutagenesis in Strongyloides ratti. **Michelle Castelletto** UCLA

594B The influence of two different harsh environments on epistatic genetic interactions. **Marta Labocha-Derkowska** Jagiellonian University

595C Hybrid assembly of the genome of the entomopathogenic nematode Steinernema carpocapsae identifies the X-chromosome. **Lorrayne Serra** University of California Irvine

596A Define and evaluate the coding capacity of Caenorhabditis briggsae using RNA-Seq data. **Shinta Thio** Simon Fraser University

597B The C. elegans model organism screening center for the NIH Undiagnosed Disease Network. **Tim Schedl** Washington Univ

598C Chromatin Accessibility Changes Discovery on S. Carpocapsae using ATAC-seq and Method Replication on C. elegans. **Heidi Liang** University of California Irvine
599A MinION-based draft genome assembly of a tube waving nematode, *Rhabditella axei*. Wonjoo Kim Seoul National University

600B 3D Genomic Architecture and Transcriptional Regulation. Moushumi Das University of Bern

601C Developing patterns: genome-wide, spatially resolved transcriptomics of the four C. elegans larval stages. Erik Schild Hubrecht Institute

602A Evolution of the rate of copy-number and structural variant mutations under relaxed selection in *Caenorhabditis elegans*. Ayush Shekhar Saxena University of Florida

603B Comparative analysis of gene expression profiles in parasitic helminths to identify novel genes involved in anaerobic metabolism. June Tan Donnelly Centre for Cellular and Biomolecular Research

604C Generating microRNA deletions and transcriptional reporters using CRISPR-CAS9 technology. Marcus Vargas University of Minnesota

605A The worm 3’UTRome v2: an updated platform to study mRNA cleavage and polyadenylation in *C. elegans*. Hannah Steber Arizona State University

606B Exploring the potential role of rDNA copy number in RNAi efficiency using a RIL population of extreme rDNA copy numbers. Elizabeth Morton University of Washington

607C ALG-1 influences accurate mRNA splicing patterns in the *C. elegans* intestine and body muscle tissues by modulating splicing factor activities. Anna Schorr Arizona State University

608A A high throughput whole genome screen investigating the cysl-2 hydrogen cyanide assimilation pathway. Mark Abbott Rutgers University

Gene Regulation and Genomics - Novel Genetic Technologies

609B A reagent toolkit for tagging genes with compound tags. Iskra Katic Friedrich Miescher Institute

610C Screening for CRISPR/Cas9-induced mutations using microchip electrophoresis in the nematode *Pristionchus pacificus*. Misako Okumura Hiroshima University

611A Transcriptomes as phenotypes. Hillel Schwartz California Institute Of Technology

612B Nested CRISPR as an alternative cloning-free method to efficiently generate endogenous fluorescent reporters. Jeremy Vicencio IDIBELL

613C Nanoluciferase-based method for detecting gene expression in *C. elegans*. Ivana Sfarcic University of California, San Diego

614A Efficient Cre/Lox recombinase-mediated cassette exchange in *C. elegans*. Matthew Schwartz University of Utah

615B Superselective primers - a powerful molecular tool with broad application to detect SNPs. Denis Touroutine University of Delaware

616C Improving the throughput of genetic dissection of host-microbiome interactions in *C. elegans*. Anastasia Khodakova Baylor College of Medicine

617A Using BioID as a tool to explore the endosomal interactome of RME-8 and SNX-1 in *C. elegans*. Sierra Swords Rutgers University

618B PhenoMIP: a deep phenotyping approach to assay *C. elegans* gene function. Calvin Mok University of Toronto

619C Re-engineering a Luminopsin Tool to Study *C. elegans* Nervous System. Richard Granger Davidson College

620A The auxin-inducible degradation (AID) system: updates. Liangyu Zhang QB3
621B Precisome™ Clinical Avatars: humanized animal models for detecting pathogenicity, interrogating mechanisms of action, and enabling targeted drug screening in clinical variants. Bethan Jones NemaMetrix Inc

622C Ultra-sensitive sequencing technique, Duplex Sequencing, to investigate mitochondrial DNA mutagenesis in *C. elegans*. Tess Leuthner Duke University

623A A high throughput whole genome RNAi screening platform using multivariate machine vision phenotypic identification. Mark Abbott Rutgers University

Gene Regulation and Genomics - RNA Interference and noncoding RNAs

624B Temperature-sensitive sterility in RNAi mutants correlates with loss of germ cell identity. Alicia Rogers University of Southern California

625C An endosome-resident zinc transporter is involved in negative regulation of systemic dsRNA spreading in *C. elegans*. Katsufumi Dejima Tokyo Women’s Medical University

626A Small RNA responses to mitochondrial dysfunction in *Caenorhabditis elegans*. Ina Kirmes The Queensland Brain Institute

627B The organization of RNA silencing through phase-separated condensates. Celja Uebel University of Southern California

628C A novel Zc3h12a ribonuclease protein participates in small RNA mediated spermatogenesis pathway in *C. elegans*. Hsin-Yue Tsai National Taiwan University College Of Medicine

629A Identification of a novel RNAi-related factor that promotes intercellular transport of double-stranded RNA. Keita Yoshida Tokyo Woman's Medical University

630B Elucidating the role of the miR-100 Family in *C. elegans*. Acadia GRIMME National Institutes of Health

631C The germline KH protein, TOFU-7, promotes maternal-effect fertility and the localization of the Piwi Argonaute, PRG-1 to germline nuage. Redi Metali UMass Medical School

632A Investigating function and regulation of a novel chromatin factor, MORC-1. Mindy Clark Johns Hopkins University

633B Interrogating the regulation and function of the mir-35 family of microRNAs in *C. elegans*. Bridget Donnelly National Institutes of Health

634C The non-seed region of an evolutionarily conserved microRNA let-7a determines its specificity and function in *C. elegans*. Ye Duan UMass Medical School

635A Circular RNAs are enriched and dynamically regulated in the neurons of *Caenorhabditis elegans*. Dong Cao OIST

636B Tissue-specific overexpression of the dsRNA importer SID-1 reduces lifespan and affects behavior in *C. elegans*. Henrique Camara UNICAMP

637C An RNAi screen to identify factors that enhance microRNA activity after dauer. Himal Roka (Pun) Central Michigan University

638A Identifying essential mir-35 targeting sites in *C. elegans*. Bing Yang National institutes of health

639B Germline development and poly(U) polymerase activity. Leanne Kelley Syracuse University

640C Novel approaches to study microRNA-mediated silencing in *C. elegans*. Karl-Frederic Vieux National Institute of Health

641A Functional analysis of microRNA-regulatory roles in *Caenorhabditis elegans* male gonad. Lu Lu Marquette University

642B Global Analysis of microRNA Tailing and Decay in *C. elegans*. Katherine Prothro National Institute of Health

643C Mechanisms of RNA export from *C. elegans* tissues. Katharine Mellman UCSF
644A CSR-1 catalytic-dependent and -independent activity on germline transcriptome. Meetali Singh Institut Pasteur

645B Understanding Argonaute/Small RNA-based intercellular communication. Robert Lao The University of Toronto

646C The role of 5-methylcytosine modification in piRNA regulation. Lichao Li University of California Riverside

647A Exploring the function of an ancient miRNA family that is essential for C. elegans embryogenesis. Emilio Santillan IMP

648B Spatiotemporal regulation of spermatogenesis transcriptional programs by small RNAs in germline liquid-like condensates. Eric Cornes Institut Pasteur

649C Cell-type Specific Profiling of Active miRNAs. Christopher Brosnan Queensland Brain Institute

650A The Argonaute CSR-1 facilitates the clearance of maternal mRNAs during maternal-to-zygotic transition. Piergiuseppe Quarato Institut Pasteur

651B Investigating a role for MORC-1 in the CSR-1 gene licensing pathway. Jessica Kirshner Johns Hopkins University

652C Exploring LIN-28-mediated regulation of the let-7 family of microRNAs. Charles Nelson UMass Medical School

653A The long and the short of it; dissecting the differential functions of two isoforms of the Argonaute CSR-1. Amanda Charlesworth University of Toronto

654B Loss of the ERGO-1 small RNA pathway in Caenorhabditis inopinata. Vicky Hunt University of Bath

655C Roles for mafr-1 in sperm quality and male fertility. Amy Hammerquist University of Southern California

656A Expression pattern of C. elegans Y RNA homologs and two different RNAs from cel-7. Takehiro Chiba Iwate University

657B UNK-1 and CRI-1 modulate the activity of miRISC during dauer in C. elegans. Himani Anand Galagali Johns Hopkins University

658C The germline helicase, GLH-3, plays a role in PRG-1-dependent piRNA silencing in C. elegans. Altair Dube University of Massachusetts Medical School

659A C06AS.6: a tudor protein implicated in transgenerational fertility. Kevin Manage University of Southern California

660B Identification and characterization of new actors of the RNAi pathway. Louis-Mathieu Harvey CRCHU de Québec - Université Laval

661C Defining the dsRNA gland of C. elegans. Yun Choi U. of Maryland College Park

662A miRNA-mediated translational repression of mRNAs through GYF-1/IFE-4 complex. Vinay Mayya McGill University

663B KH domain containing RNA binding proteins coordinate with microRNAs to regulate gene expression. Dustin Haskell Kansas State University

664C Investigating the interaction between germline specific DEAD-box helicase VBH-1 and CSR-1. Johan Girgenrath UMass Medical School

665A A genetic dissection of endogenous siRNA involvement in the nonstop decay pathway in C. elegans. Evana Mortezavi Villanova

666B A novel role for the RAB-6.2 GTPase in regulating LET-23 EGFR-mediated vulva induction, possibly via microRNA regulation. Sarah Gagnon Research Institute of the McGill University Health Center

667C C. elegans Vasa homologs, GLHs function with JNK-related kinase, KGB-1 in regulation of epigenetic gene silencing. Slyuan Dai UMass Medical School

668A Differential Expression and Localization of CSR-1 Isoforms Allows for Regulation of Distinct Target Genes. Dieu An Nguyen University of Southern California
669B Investigating a genome-wide role for endogenous siRNAs in mRNA quality control in Caenorhabditis elegans. Grace Wong Villanova University

670C ZNFX-1 and candidate interactors promote stable transgenerational germline gene expression. Daniel Durning UMass Medical School

671A Systematic proteomic identification of miRISC interactors and characterization of their functional requirement identifies multiple RNA binding proteins as modulators of miRNA activity. Anna Zinovyeva Kansas State University

672B Identification of miRNA interacting proteins. Shilpa Hebbar Kansas State University

Neurobiology - Behavior

673C Tyramine instigates behavioural responses through top-down memory pathway in Caenorhabditis elegans. Amal Varghese Sree Chitira Tirunal Institute of Medical Sciences and Technology

674A Using CeNDR to find genes that influence Behavior. Tiffany Baiocchi University of California, Riverside

675B A pair of descending interneurons AVA control the motor state activity. Jun Meng University of Toronto

676C Male Specific C. elegans Mating Behaviors Regulated by Two GPCR in CEM Neurons. Annalise Robidoux Worcester Polytechnic Institute

677A Genetic analysis underlying positive regulation of cold tolerance. Satomi Mizuno Konan University

678B Neural circuit spanning the entire body regulates temperature acclimation. Haruka Motomura Konan University

679C Molecular regulators of C. elegans thermotaxis and thermosensory plasticity. Nathan Harris Brandeis University

680A Gait selection of Caenorhabditis elegans is regulated by mechanosensitive DEG/ENaC channels. Kyeong Min Moon Dgist

681B Identify genes to mediate ascr#3 avoidance in C. elegans. YeonJi Park DGIST

682C Dopamine-Mediated Gravitaxis in Caenorhabditis elegans. Wei-Long Chen National Cheng Kung University

683A Investigation of the Neural Basis for Conditioned Bacterial Avoidance by Mitochondrial Insults in C. elegans. Chien-Po Liao Molecular Medicine

684B Irrational behavior in C. elegans arises due to asymmetric modulatory effects between options. Rotem Ruach The hebrew university

685C Genetic Dissection of Mate Recognition in C. elegans. Chun-Hao Chen Caltech

686A Neural and genetic mechanisms of cinnamaldehyde sensation in C. elegans. Elizabeth Ronan University of Michigan

687B Cl- channels in glia control touch behavior in C. elegans. Jesus Fernandez Abascal University of Miami

688C Role of glial enriched ion channels and transporters in C. elegans sensory behaviors. lei wang University of Miami

689A The role of srw-38 in satiety quiescence. Mizuho Mohri Nagoya university

690B New clues about ivermectin and its mode of action. Adrian Wolstenholme University of Georgia

691C Molecular and Functional Characterization of Age-Dependent Changes in C. elegans Thermosensory behaviors. Tzu-Ting Huang Nagoya University

692A Deconstructing the sexually dimorphic circuit for chemical avoidance. Vladyslava
Pechuk The Weizmann Institute of Science

693B Advanced behavioral arenas for C. elegans by 3D-printing nematode growth medium. Steel Cardoza University of Michigan

694C Y92H12A.4(ints-3), a subunit of the Integrator complex, acts in AFD thermosensory neurons to support a behavioral preference. Joon Lee Yale University

695A Systematic phenomics analysis of ASD-associated genes defines shared functions and identifies parallel genetic networks underlying hypersensitivity and impaired habituation learning. Troy McDiarmid University of British Columbia

696B Neuropeptides differentially mediate facilitatory forms of non-associative learning. Alex Yu University of British Columbia

697C Characterizing Behavioral and Morphological Effects of Mutations in Orthologs of Parkinson’s Disease-Associated Genes. Joseph Liang University of British Columbia

698A Integration of detected salt concentrations with motor state mediated by a single interneuron in C.elegans. Ayaka Matsumoto The University of Tokyo

699B A novel model of bending wave generation supports a threshold-switch mechanism in the C.elegans motor circuit. Hongfei Ji University of Pennsylvania

700C All-or-none depolarization of ASER evoked by an NaCl down-step. Ichiro Maruyama Okinawa Institute of Science and Technology Graduate University

701A Identification of genes required for natural variation affecting temperature acclimation. Akane Iwato Konan University

702B An Upconversion Nanoparticle Enables Near Infrared-Optogenetic Manipulation of the C. elegans Motor Circuit. Kanghua Zeng College of Life Science and Technology, Huazhong University of Science and Technology,

703C An Upconversion Nanoparticle Enables Near Infrared-Optogenetic Manipulation of the C. elegans Motor Circuit. Bin Yu College of Life Science and Technology, Huazhong University of Science and Technology

704A TrakBox: A low-cost tracking system for monitoring freely moving C.elegans. Fernando Calahorro University of Southampton

705B Phase response curves for optogenetic manipulation support a threshold switch model for locomotory rhythm generation. Alice Liu University of Pennsylvania

706C Genetic Analyses of Neuropeptides Regulating Forgetting of Olfactory Adaptation in C. elegans. Yuuki Onishi Kyushu University

707A The function of axonal DAF-2c signaling in taste avoidance learning in C. elegans. Masahiro Tomioka University of Tokyo

708B A dual function of MUT-7 is required for siRNA regulatory event in promoting olfactory adaptation. Bi-Tzen Juang National Chiao Tung University

709C Novel natural compounds that target serotonin signaling in the nematode C. elegans. Yen-Chih Chen NYU school of medicine

710A Disruption of Mitochondrial Function Supports Dopamine-Dependent Paralysis and Neurodegeneration in C. elegans. Osama Refai Florida Atlantic University

711B Sensory Temporal Dynamics of the Dauer Decision. Ariel Parker Johns Hopkins University

712C Multi-tissue coordination in neuropeptides regulation of Caenorhabditis elegans dauer development and behaviors. Mengyi Cao California Institute of Technology

713A Regulated control of age-dependent memory decline. Attila Stetak University of Basel

714B Identifying key regulators of tonic Ca^{2+} signalling in neurons using cell-specific
RNAi screening. **Qiaochu Li** The University of Edinburgh

715C The analysis of behavioral choice induced by multiple odorants. **Yuji Suehiro** Tokyo Women’s Medical University

716A Identification of components of stress-induced sleep (SIS) in an undergraduate laboratory course. **Cheryl Van Buskirk** California State University Northridge

717B Using Computer Vision to decipher *C. elegans* locomotion before and after training in T-mazes. **Shurjo Banerjee** The University of Michigan

718C Roles of TCN-1 transmembrane protein in *C. elegans* osmosensation. **Fouley Tirera** McGill University

719A Determining the effects of fat utilization on the neuromuscular performance of male *C. elegans*. **Jimmy Goncalves** Texas A&M University

720B Multiple sensory neurons mediate starvation-dependent aversive navigation in *Caenorhabditis elegans*. **Moon Jang** The University of Tokyo

721C Investigation of the neural and genetic basis of odor discrimination in *C. elegans*. **Hee Kyung Lee** Yonsei university wonju college of medicine

722A Plasticity of asc#3 avoidance behavior in *C. elegans*. **Hyeonjeong Hwang** DGIST

723B FMRF-like neuropeptide controls a *C. elegans* putative maternal behavior in a 3D environment. **Tong Young Lee** Yonsei University

724C The role of neuropeptides in feeding-induced sleep in *C. elegans*. **Mei Makino** Nagoya University

725A FMRFamide-related neuropeptide FLP-12 regulates head locomotion of *C. elegans*. **Do-Young Kim** DGIST

726B GDE-4 mediates pheromone avoidance behavior of *C. elegans*. **Yongjin Cheon** DGIST

727C The neuropeptide Y GPCR system is pharmacologically and functionally conserved in the model organism *C. elegans*. **Victoria Gross** Rudolf Schönheimer Institute of Biochemistry

728A Ubiquitin ligases are involved in taste avoidance learning in *C. elegans*. **Yasuaki Ike** The University of Tokyo

729B Cellular analysis in forgetting of an olfactory memory in *Caenorhabditis elegans*. **Jamine Teo** Kyushu University

730C *C. elegans*-on-a-chip: Monitoring High Glucose Induced-Aging Leading to Manifestation of Parkinson’s Disease-like Symptoms. **Arvie Camille de Guzman** Myongji University

731A The roles of nhr-50 and nhr-99 in Satiety Quiescence. **Enkhjin Ulzii** Nagoya University

732B The chemosensory GPCR SRI-14 is required for concentration-dependent DMTS odor preference in *C. elegans*. **Woochan Choi** DGIST

733C Expressing human epithelial Na channel (ENaC) subunits in *C. elegans* to model human salt taste. **Matthijs Wesseling** Erasmus MC

734A Characterization of *C. elegans* exercise-induced quiescence in liquid medium. **Kelsey Schuch** Brown University

735B Signatures of central and peripheral control in an integrated neuromechanical model of *C. elegans* locomotion. **Jack Denham** University of Leeds

736C A male-specific neuroendocrine feedback loop couples food signals to feeding behavior in *C. elegans*. **Leigh Wexler** Strong Memorial Hospital

737A A tracking microscope for long-term calcium imaging in behaving *C. elegans*. **Mohammad Torkashvand** Northeastern University

738B Using the Million Mutation Project strains to obtain a range of touch insensitive mutants. **Stephanie Lawry** Columbia
University

739C *pezo-1* phenotypes in *Caenorhabditis elegans* males. **Katherine Brugman** California Institute of Technology

740A Determining the function of globin gene GLB-28 in ciliated sensory neurons. **Kumar Tiger** Rutgers University

741B *C. elegans* ciliated sensory neurons release distinct subpopulations of extracellular vesicles. **Michael Clupper** University of Delaware

742C The egg-counter: A microfluidic platform for analysis of egg-laying behavior. **Kristin Robinson** University of Oregon

743A Uncovering the Molecular Mechanisms of Thermosensation. **Tyler Hill** Brandeis University

744B How do nematodes navigate in T-mazes? Mathematical models of the neuronal circuits that steer *C. elegans* learning and decision making. **Eleni Gourgou** University of Michigan

745C Linking instantaneous behavior with global outcomes in *Caenorhabditis elegans* chemotaxis. **Gabriel Madirolas** Research Center on Animal Cognition - CNRS

746A The effects of dietary vitamin B12 on chemoreceptor gene expression. **Aja McDonagh** University of Nevada, Reno

747B Regulation of early avoidance behavior in response to Gram-positive pathogens by *tax-2* and *npr-1* expressing neurons in *C. elegans*. **Adam Filipowicz** Oregon Health and Science University

748C Sleep enhances survival during viral infection. **David Raizen** Univ Pennsylvania, Dept Neurology

749A Requirement of glial Na⁺/K⁺-ATPase in touch sensation highlights ionic and metabolic link between glia and touch neurons in *C. elegans*. **Christina Johnson** University of Miami Miller School of Medicine

750B Investigating the role of mechanoreceptors for magnetotransduction in *C. elegans*. **Chance Bainbridge** Illinois State University

751C Compulsive Drug Seeking in *C. elegans*. **Changhoon Jee** UTHSC

752A Beauty sleep: Skin collagens regulate sleep in response to cell stress. **Kristen Davis** University of Pennsylvania

753B Ethanol Preference in *C. elegans*. **Chinnu Salim** University of Tennessee Health Science Center

754C Characterization of *C. elegans* motor behaviour in 3D environment?**s. **Omer Yuval** University of Leeds

755A A salt-induced kinase (SIK) is required for the metabolic regulation of sleep. **Jeremy Grubbs** University of Nevada, Reno

756B Stimulation of egg laying by lipopolysaccharide (LPS) is mediated by TOL-1 and G-protein coupled receptor signaling in *C. elegans*. **Angela Ching-Yee Leung** Baylor University

757C Exploring *cca-1* as a novel regulator of primary cilia function in *C. elegans*. **Cameron LaFayette** UAB

758A Identifying novel regulators of primary cilia function in *C. elegans*. **Melissa LaBonty** University of Alabama at Birmingham

759B Odor-Mediated Paralysis in *Pristionchus pacificus* Shares a Pathway with an Ancient Nematocide. **Paramin Sangithongkam** California State University, Northridge

760C Systematic functional analysis of 21st chromosome genes using *C. elegans*. **Sophia Sanchez** University of Texas at Austin

761A Investigating the role of the transcription factor DMD-10 in regulating nervous system function. **Annette McGeehe** Suffolk University

762B Perturbations in purine metabolism
impacts associative and non-associative learning. Corinna Moro Pennsylvania State University

763C The RNA-binding proteins EXC-7 and MSI-1 upregulate serotonin signaling in the male tail. Zhe Yang University of Kansas

764A A computational model of mixed pattern generation for forward and backward locomotion in C. elegans. Eduardo Izquierdo Indiana University

766C A novel associative learning paradigm for investigating the spatiotemporal control of learning and memory in C. elegans. Eugene Li Qun Lee Massachusetts Institute of Technology

767A Dissecting neural mechanisms for motor sequence generation in C. elegans. Jing Huo University of Science and Technology

768B Exploring force transmission pathways during C. elegans proprioception. Michael Krieg ICFO

769C Information theory rules out the body cascade model of C. elegans locomotion. Saul Kato UCSF

770A Shared behavioral mechanisms underlie C. elegans aggregation and swarming. Siyu Ding Imperial College London

771B Individuality in C. elegans turning behaviour affects its motile efficiency. Mathijs Rozemuller AMOLF

Neurobiology - Neuronal Development

772C A model of hereditary sensory and autonomic neuropathy type 1 reveals a role of sphingolipids in neuronal polarity. Mengqiao Cui University of Macau

773A The epigenetic regulator SET-2 controls nervous system development through H3K4 methylation. Steffen Norgaard Biotech Research and Innovation Centre

774B Unused program number

775C Ursolic Acid promotes neurite outgrowth and protects against axon degeneration in Caenorhabditis elegans. Wenyue Wang Monash University

776A Dendritic transport of KPC-1 transcripts mediates local dendrite self-avoidance of a nociceptive neuron. Mushaine Shih University of Illinois at Chicago

777B Decoding the role of the NFY transcription factor in brain development. Pedro Moreira Monash University

778C Do unique homeobox gene codes define all neuron classes of the C. elegans nervous system? Molly Reilly Columbia University

779A A non-canonical TGF-$
\beta$ pathway drives neuronal guidance. Oguzhan Baltaci Monash University

780B Cellular and molecular mechanisms of mok-1 function in left-right neuronal asymmetry. Rui Xiong University of Illinois at Chicago

781C A universal transportin protein controls asymmetric olfactory neuron differentiation via specific nuclear transport of a sox-2-activating factor. Yi-Wen Hsieh University of Illinois Chicago

782A What guides the leaders: Identifying factors controlling pioneer axon navigation. Abigail Feresten Simon Fraser University

783B Functions for git-1 in dendritic maintenance and behavior in C. elegans. Yael Iosilevskii Technion - Israel Institute of Technology

784C The TIAM-1 guanine nucleotide exchange factor shapes somatosensory dendrites independently of Rac1 guanine nucleotide exchange activity by controlling F-actin localization. Leo Tang Albert Einstein
<table>
<thead>
<tr>
<th>Poster Number</th>
<th>Title</th>
<th>Speaker(s)</th>
<th>Institution(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>785A</td>
<td>Hox-mediated specification of neurons along the A-P axis in the male ventral cord.</td>
<td>Andrea Kalis</td>
<td>St. Catherine University</td>
</tr>
<tr>
<td>786B</td>
<td>The development and functions of GLR glia.</td>
<td>Nikolaos Stefanakis</td>
<td>Rockefeller University</td>
</tr>
<tr>
<td>787C</td>
<td>DAF-19M, as a regulatory subroutine, controls an IL2 neuron dependent dispersal behavior of C. elegans.</td>
<td>Soungyub Ahn</td>
<td>Seoul National University</td>
</tr>
<tr>
<td>788A</td>
<td>Loss of SAX-7 suppresses axonal defects of ctbp-1 mutant animals.</td>
<td>Tessa</td>
<td>Monash University</td>
</tr>
<tr>
<td>789B</td>
<td>The histone methyltransferase SET-2 controls axon guidance through actin remodeling.</td>
<td>Benedetta Attianese</td>
<td>Biotech Research and Innovation Centre (BRIC)</td>
</tr>
<tr>
<td>790C</td>
<td>Using fluorescence-activated cell sorting and RNA-seq to identify mRNA targets of ETR-1/CELF that regulate Q neuroblast migration.</td>
<td>Matthew Ochs</td>
<td>University of Kansas</td>
</tr>
<tr>
<td>791A</td>
<td>Dauer IL2 neurons use distinct and shared mechanisms with FLP and PVDs to regulate arborization.</td>
<td>Rebecca Androwski</td>
<td>University of Illinois</td>
</tr>
<tr>
<td>792B</td>
<td>The somatic nuclear Argonaute NRDE-3 mediates developmental programming in ADL neurons resulting from early life stress in Caenorhabditis elegans.</td>
<td>Maria Ow</td>
<td>Syracuse University</td>
</tr>
<tr>
<td>793C</td>
<td>The conserved transcription factor mef-2 regulates sickness induced sleep.</td>
<td>Alex Rohacek</td>
<td>University of Pennsylvania</td>
</tr>
<tr>
<td>794A</td>
<td>The RalGEF-Ral signaling module confers positional information in cell migration.</td>
<td>Jacob Mardick</td>
<td>Institute of Biosciences and Technology, Texas A&M University</td>
</tr>
<tr>
<td>795B</td>
<td>Specification, fate, and function of undead cells.</td>
<td>Alison Kochersberger</td>
<td>Yale University</td>
</tr>
<tr>
<td>796C</td>
<td>The BAG2 co-chaperone UNC-23 regulates amphid sensory neuron</td>
<td>Cecilia Martin</td>
<td>Fred Hutchinson Cancer Research Center</td>
</tr>
<tr>
<td>797A</td>
<td>Ephrin signaling regulates the morphology of the AFD thermosensory neuron receptive ending.</td>
<td>Erik Black</td>
<td>Fred Hutchinson CRC</td>
</tr>
<tr>
<td>798B</td>
<td>The role of Ca2+/calmodulin-dependent protein kinase II in presynaptic assembly.</td>
<td>Mizuki Kurashina</td>
<td>University of British Columbia</td>
</tr>
<tr>
<td>799C</td>
<td>Building a brain: Systematic examination of the organization and assembly of the C. elegans brain.</td>
<td>Mark Moyle</td>
<td>Yale School of Medicine</td>
</tr>
<tr>
<td>800A</td>
<td>SAX-7/L1CAM in the maintenance of neuronal architecture.</td>
<td>Virginie Desse</td>
<td>UQÀM</td>
</tr>
<tr>
<td>801B</td>
<td>Investigating the effects of altering gravity on dendrite development in C. elegans.</td>
<td>Je-Hyun Moon</td>
<td>Yonsei University</td>
</tr>
<tr>
<td>802C</td>
<td>Evolution of neuronal anatomy in two divergent nematode species.</td>
<td>Ray Hong</td>
<td>California State University</td>
</tr>
<tr>
<td>803A</td>
<td>CU-Eudragit-PVA nanoparticles for antiaging of dopamine neurons in Caenorhabditis elegans.</td>
<td>Eun Ji Kim</td>
<td>Myongji university</td>
</tr>
<tr>
<td>804B</td>
<td>Comprehensive analysis of the cadherin gene family in C. elegans.</td>
<td>Maryam</td>
<td>Columbia University</td>
</tr>
<tr>
<td>805C</td>
<td>Towards an understanding of the cellular and molecular mechanisms of retrograde-like neurite outgrowth.</td>
<td>Michael Galiano</td>
<td>Sloan-Kettering Institute</td>
</tr>
<tr>
<td>806A</td>
<td>Single cell transcriptomics of the Q neuroblast lineage reveals mechanisms in neurogenesis, directional migration and Wnt pathway regulation.</td>
<td>Annabel Ebbing</td>
<td>Hubrecht Institute</td>
</tr>
<tr>
<td>807B</td>
<td>Genetic and molecular analysis of mau genes.</td>
<td>Victoria CERDEIRA</td>
<td>UQAM</td>
</tr>
<tr>
<td>808C</td>
<td>Neurite position and synaptic protein localization are mediated by the apoptosis pathway during development.</td>
<td>Noelle</td>
<td></td>
</tr>
</tbody>
</table>
Koonce Yale University School of Medicine

809A Decoding pharyngeal neuron fate specification. Burcu Gulez Columbia University

810B The molecular code for neural connectivity. Scott Emmons Albert Einstein Col Med

811C A novel Rab GTPase restricts dendrite branching. Christopher Salazar Albert Einstein College of Medicine

812A Molecular analysis of DD neuron remodeling reveals a new genetic pathway required for synapse elimination. Kellianne Alexander University of Massachusetts Medical School

813B Conserved molecular pathways establish glial diversity in C. elegans. Karolina Mizeracka Boston Children’s Hospital

814C The extracellular matrix protein MIG-6/papilin mediates the maintenance of neuronal architecture. Malika NADOUR Université du Québec à Montréal

815A Identifying roles for MEC-3 targets in dendritic branching. Jamie Stern Vanderbilt University

816B Roles of cell adhesion proteins in the C. elegans male tail. Naoko Sakai Albert Einstein College of Medicine

817C Characterization of Two Genes Expressed in Chemosensory Amphiad Sheath Cells. Alexis Mahloch CSU Northridge

818A Securing motor neuron terminal identity throughout life by intercepting a Hox-mediated transcriptional switch. Paschalis Kratsios University of Chicago

819B Branched actin promotes presynaptic disassembly in remodeling GABAergic motor neurons. Siqi Chen Vanderbilt University

820C A bulk endocytosis-like mechanism is hijacked to remove presynaptic terminals in remodeling GABA neurons. Andrea Cuestas Condori Vanderbilt University

821A Investigating the Function of the ARID-type Transcription Factor CFI-1 in Cholinergic Motor Neurons of the Nematode C. elegans. Yinan Li The University of Chicago

822B Terminal neuronal cell size is progressively regulated by key neuronal cell fate regulators during embryonic development. Thomas Mullan University College London

823C Specialized glia drive circuit assembly initiation through unique morphogenesis and the guidance of defined pioneers. Georgia Rapti The Rockefeller University

824A Characterizing Novel Pathways for Dendritic Tiling in C. elegans. Meera Trivedi Albert Einstein College of Medicine

825B PAN-1 interacts with MYRF to regulate synaptic rewiring in DDs. Yingchuan Qi ShanghaiTech University

826C Phototransduction mechanisms in C. elegans. Xinxing Zhang University of Michigan

827A Functional characterization of the Caenorhabditis elegans FKH family member FKH-8. Zeinab Yadegari Fisk university

828B Quantitative study of dopaminergic phenotypes via computer-aided video analysis. Gustavo Garriga Fisk University

829C Identifying Genetic Targets of the Transcription Factor FKH-8 in C. elegans. Marina Hanna Fisk University

1231C Autocrine insulin signaling during development mediates plasticity in the function of a C. elegans sensory neuron. Lauren Bayer Horowitz NYU Langone Medical Center

Neurobiology - Novel Neuronal Methods

830A Development of microfluidics device to study mechanosensory neurons in the diapause of Caenorhabditis elegans. Sungjong Kim Institute of Molecular Biology and Genetics
831B Automatic posture and muscle activity profiling from *C. elegans* copulation videos. **Yufeng Wan** Texas A&M University

832C Laser axotomy and optogenetic inhibition of the synapses in the nerve ring. **Yuki Tsukada** Nagoya Univ

833A Alzheimer’s disease relevant Tau modifications aggravate mitochondrial dysfunction and neurodegeneration in novel *C. elegans* single-copy transgenic models. **Sanjib Guha** University of Rochester

834B Development of the immobilization method of live *Caenorhabditis elegans* individuals using an ultra-thin polydimethylsiloxane microfluidic chip with water retention. **Michiyo Suzuki** QST-Takasaki

835C Mechanical compression in a microfluidic environment, a novel method for the study of traumatic nervous system injury in *Caenorhabditis elegans*. **Hunter Edwards** Texas Tech University

836A High-throughput Microscopy Platform toward a Roadmap for Accelerating Vertebrate Neuroregeneration Research. **Yao Wang** Northeastern University

837B Connecting the Dots: Mapping a Connectome by Visualizing Synapses with ProExM of Epitope Tags. **Zainab Tanvir** New Jersey Institute of Technology

838C Expansion of the cGAL/split cGAL bipartite expression system. **Daniel Oh** California Institute of Technology

839A Light-inducible caspase as high-precision cell ablation tool in *C. elegans*. **Zhiyan Xi** The University of Edinburgh

840B Using the calcium integrator CaMPARI to map circuits in *C. elegans*. **Benjamin Brissette** NYU School of Medicine - Skirball Institute of Biomolecular Medicine

841C Methods for investigating *C. elegans* behavior in a naturalistic environment. **Aurelie Guisnet** McGill University

842A A strategy for neuron identification in whole-brain videos. **Shivesh Chaudhary** Georgia Institute of Technology

843B An inexpensive automated optogenetic platform for controlled neuronal activation regimes in *C. elegans*. **Zachary Crawford** North Carolina State University

844C An open-top light sheet microscope with remote focusing for imaging neural activity of *C. elegans* in microfluidics. **Alexander Calhoun** Georgia Institute of Technology

845A Optogenetic interrogation of a neuronal circuit orchestrating locomotion ‘stop’ using fast volumetric scanning and dual Ca$^{2+}$ imaging. **Alexander Gottschalk** Buchmann Institute, Goethe University

846B A whole-animal confocal imaging platform shows oscillating motor neuron activities in the basal motor neuron circuit. **Sudip Mondal** University of Texas at Austin

847C An automated droplet-based platform for behavioral screens in *C. elegans*. **Guillaume Aubry** Georgia Institute of Technology

848A Computational investigation of locomotion through integration of connectomics, neural dynamics and biomechanics in *C. elegans*. **Jimin Kim** University of Washington

849B Neural signal extraction from high dimensional calcium imaging using spatiotemporal neural networks. **Andrew DuPlissis** University of Texas at Austin

850C The Role of Intermediate Filaments in Aggregate Collection and Exopher Ejection. **Sohil Ardesha** Rutgers University

851A Developing alternative methods for high-throughput behaviour assay. **Akihiro Mori** MRC-LMB

852B Femtosecond laser microdissection isolates single *C. elegans* neurons for nerve regeneration RNA-seq studies. **Peisen Zhao** The University of Texas at Austin

853C OpenWorm: overview and recent advances in integrative biological simulation
of Caenorhabditis elegans. Stephen Larson OpenWorm Foundation

Neurobiology - Regeneration and Degeneration

854A Role of Tar DNA binding protein-43 (TDP-43) in mediating alpha-synuclein (HASN) toxicity in a Parkinson’s disease model. Linjing Shen University of Macau

855B A transgenic co-expressed Amyloid-β and α-Synuclein dementia model in Caenorhabditis elegans. Xiaobing Huang University of Macau

856C The α-tubulin acetyltransferase MEC-17/αTAT1 is essential for robust axonal regeneration. Jean - Sebastien Teoh Monash University

857A BTBD9/HPO-9, a novel regulator of manganese-induced neurotoxicity in Caenorhabditis elegans. Pan Chen Albert Einstein College of Medicine

858B Key role of SMN/hnRNPQ in neurodegeneration. Elia Di Schiavi IBBR, CNR

859C Engulfing cells promote neuronal regeneration and remove neuronal debris through distinct biochemical functions of CED-1. Nobuko Suzuki University of Illinois at Chicago

860A The dynamin GTPase is required for regenerative axonal fusion. Tarika Vijayaraghavan Monash University

861B Durability of the C. elegans male copulation circuitry involves succinate dehydrogenase regulation of muscle and hypodermal phosphoenolpyruvate carboxykinase levels. L. Rene Garcia Texas A&M University

862C Insights into the effects of α-synuclein in age-dependent neuronal maintenance, physiological function and pathological mechanism. Xuan Wang AIST

863A Excitotoxicity and Neuroprotection in C. elegans: Possible Communication between Glutamate and Insulin Signaling Cascades through Tamalin/GRAS-1. Ayesha Chowdhury City College of New York CUNY

864B Novel exporting pathway of intranuclear polyglutamine aggregates expressed in motor neurons of C. elegans. Xiarepa Aihemaiti 1) Biomedical RI, AIST; 2) Grad. Sch. of Life & Env. sci., Univ. of Tsukuba.

865C Characterization of novel C. elegans models of amyotrophic lateral sclerosis. Sarah Duhaime CHUM Research Center (CRCHUM)

866A Phosphatidylserine exposure mediated by ABC transporter activates the integrin signaling pathway promoting axon regeneration. Strahil Pastuhov Nagoya University

867B Preclinical validation and prioritization of small molecules that rescue kcc-2/KCC3 phenotypes. Rachel De Barros Oliveira McGill University

870B Manganese-zinc-interactions in Parkinson’s disease and aging in Caenorhabditis elegans. Jessica Baesler University of Potsdam, Institute of Nutritional Science

871C Investigations on manganese-induced oxidative stress and its impact on DNA repair in C. elegans. Merle Nicolai University of Potsdam

872A A screen for suppressors of behavioral defects in a C.elegans model of tau pathology. Kaili Chickering VAPSHC

873B From worms to humans: using C. elegans as a model to discover mechanisms underlying neurodegenerative diseases and identify novel treatment targets. Jeanna
Wheeler Seattle Institute for Biomedical and Clinical Research

874C C. elegans TDP2 homolog negatively regulates axon regeneration by inducing SUMOylation of an Ets transcription factor. Yoshiki Sakai Nagoya University

875A C. elegans Tensin promotes axon regeneration by connecting the Met-like SVH-2 and integrin signaling pathways. Tatsuo Shimizu Nagoya University

876A A targeted RNAi screen identifies new modifiers of TDP-43 in a C. elegans model of ALS and FTLD-TDP. Joshua Hincks Veterans Affairs Puget Sound

877C Loss of bas-1 suppresses tau-induced toxicity in a Caenorhabditis elegans model of tau toxicity via kinases and phosphatases. Rebecca Kow Veterans Affairs Puget Sound Health Care

878A Polyadenylation nucleases modulate tau-induced toxicity in a transgenic Caenorhabditis elegans. Rebecca Kow Veterans Affairs Puget Sound Health Care

879B The putative kinesin adaptor UNC-76 maintains neuronal architecture in Caenorhabditis elegans. Michelle Wong Biomedical Discovery Institute

880C Age dependent regulation of functional restoration in touch neuron. Atryyee Basu National Brain Research Centre

881A A UBQLN2 transgenic C. elegans model of ALS. Aleen Saxton SIBCR/VAPSHC

882B An extrinsic mechanism of axon regeneration inhibition from the C. elegans intestine. Alexander Lin-Moore Yale University

883C Probiotic-mediated suppression of age-related neurodegeneration. Audrey Labarre CRCHUM, Université de Montréal

884A In vivo two-photon calcium imaging to measure neuronal activity under a pro-regenerative condition in Caenorhabditis elegans. Scarlett Delgado University of Valparaíso

885B Investigating the impact of the human microbiota on Alzheimer’s Disease using Caenorhabditis elegans as a model. Kim Pho McMaster University

886C Impact of Microbiota on Neurodegeneration in Tauopathies Using C. elegans as a Model Organism. Hiva Mesbahi McMaster

887A Deep phenotyping degeneration of PVD neuron using Convolutional Neuronal Network machine learning technique. Sahand Saberi Bosari North Carolina State University

888B Microfluidic platform for in vivo characterization of neuronal damage in Alzheimer’s disease in C. elegans. Rita Tejada Vaprio North Carolina State University

889C Constitutive XBP-1s-mediated activation of the endoplasmic reticulum unfolded protein response protects against pathological tau. Sarah Waldherr University of Washington

890A slc-25A46 is required for proper localization of mitochondria and mitochondrial fusion. Hiroyuki Obinata Tohoku University

891B Anatomical and functional rewiring of dendrites after injury. Anindya Ghosh Roy National Brain Research Centre

893A Fluorescent screen for identifying axon regeneration genes. Noa Grooms Northeastern University

894B Role of neuronal G protein-coupled receptor SRBC-48 in pathogen-induced neurodegeneration. Supender Kaur OREGON HEALTH AND SCIENCE UNIVERSITY

895C A conserved nuclear ubiquitination system is required for C9orf72-associated dipeptide toxicity in C. elegans and mammals. Carley Snoznik Children’s Hospital, Rangos 7th Floor, Bay 9

896A Identifying Epigenetic Modulators of Neuronal Resilience in the C.
POSTER SESSION LISTINGS

elegans Dopaminergic System. **Anthony Gaeta** University of Alabama

897B Investigating the Role of ER-Mitochondrial Contact Sites Following Exposure to a Neurodegenerative Bacterial Metabolite. **Jennifer Thies** The University of Alabama

898C miRNA-Mediated Protection from α-synuclein-Induced Dopaminergic Neurodegeneration in *C. elegans*. **Karolina Willicott** University of Alabama

899A A Regulatory Intersection of Dopamine and miRNA Transport in *C. elegans* Parkinson’s Disease Models. **John Nourse** University of Alabama

900B Roles of membrane contact site components in axon regeneration. **Christopher Piggott** University of California San Diego

901C Cell to cell spreading of TDP-43 may be linked to toxicity in *Caenorhabditis elegans*. **Cindy Voisine** Northeastern Illinois University

902A Transcriptional Neuroprotective Mechanisms in a Nematode Model of Excitotoxic Necrosis. **Zelda Mendelowitz** City University of New York

903B APP-induced patterned neurodegeneration is exacerbated by APOE4 in *C. elegans*. **Lotti Brose** University of Texas at Austin

904C Mediators of excitotoxic neurodegeneration in *C. elegans*: DAPK and mitochondrial involvement. **Adem Idrizi** The CUNY School of Medicine at City College

905A Coordinate regulation of axon regeneration and degeneration in injured GABA motor neurons. **Victoria Julian** University of Massachusetts Medical School

906B Roles of the von Willebrand factor A domain protein *vwa-8* in axon regeneration. **ming zhu** University of California, San Diego

907C Inhibition of axon regeneration by liquid-like granules of TIAR-2. **Matt Andrusiak** University of California, San Diego

908A Identifying suppressors of stress-induced neurodegeneration in a knock-in SOD-1 Amyotrophic Lateral Sclerosis model. **Katherine Yanagi** Brown University

909B Regulation of axon regeneration by the mRNA decay factors. **Ngang Heok Tang** UC San Diego

910C Fasting greatly increases production of exophers as a neuronal garbage elimination strategy. **Jason Cooper** Rutgers University

911A Number not assigned.

912B Axon regeneration and synapse reformation are independently regulated by divergent poly(ADP-ribose) polymerase pathways to inhibit functional axon regeneration. **Micah Belew** UMass Medical School

913C Neuron-glia interaction: remodelling axonal attachment following axonal injury. **Igor Bonacossa-Pereira** The University of Queensland

914A Lipid metabolism during axon regeneration. **Seungmee Park** University of California San Diego

915B Characterisation of transgenic *C. elegans* expressing human tau in the GABAergic motoneurons. **Emilien Schramm** Centre de Recherche du CHUM

916C Exophers colocalize with hypodermal lysosomes via endocytic trafficking. **Jonathan St. Ange** Rutgers University

917A O-GlcNAc signaling enhances neuronal regeneration through modulation of cellular metabolism. **Christopher Gabel** Boston Univ Sch Medicine

918B Functional dissection of *C. elegans* bZip-protein CEBP-1. **Kyung Won Kim** Hallym University

919C Injury-induced autophagy activity promotes age-dependent axon regeneration in *C.elegans*. **Lizhen Chen** UT Health Science Center
<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Speaker</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>921B</td>
<td>Natural microbiome of Chilean C. elegans isolates and their relationship with neuroprotection. Sebastián Urquiza Universidad Mayor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>922C</td>
<td>C. elegans egg laying is controlled by a stretch-dependent homeostat. Emmanuel Medrano University of Miami</td>
<td></td>
<td></td>
</tr>
<tr>
<td>923A</td>
<td>Characterisation of the nematode acid-sensing ion channel ACD-5. Eva Kaulich MRC Laboratory of Molecular Biology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>924B</td>
<td>A highly conserved protein domain directs sex- and neuron type-specific protein degradation of a Doublesex-type transcription factor. Emily Bayer Columbia University</td>
<td></td>
<td></td>
</tr>
<tr>
<td>925C</td>
<td>Decoding head neural circuit underlying rhythmic forward movement in C. elegans. Jinmahn Kim Daegu Gyeongbuk Institute of Science & Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>926A</td>
<td>Visualizing structure and development of the C. elegans pharyngeal nervous system. Steven Cook Columbia University</td>
<td></td>
<td></td>
</tr>
<tr>
<td>927B</td>
<td>Olfactory circuit structure is reconfigured between divergent nematode species. Steven Cook Columbia University</td>
<td></td>
<td></td>
</tr>
<tr>
<td>928C</td>
<td>Biochemical consequences of Gαq signaling in the modulation of a serotonin motor circuit of C. elegans. Pravat Dhakal University of Miami</td>
<td></td>
<td></td>
</tr>
<tr>
<td>929A</td>
<td>Toward understanding neural computations in an interneuron A1Y through optogenetical manipulation of its presynaptic sensory neurons AFD and AWC. Amane Kano Nagoya University</td>
<td></td>
<td></td>
</tr>
<tr>
<td>930B</td>
<td>Horizontal and bilateral information flow in the C. elegans olfactory circuit. Ithai Rabinowitch Hebrew University of Jerusalem</td>
<td></td>
<td></td>
</tr>
<tr>
<td>931C</td>
<td>Flexible motor sequence generation during stereotyped escape responses. Yuan Wang University of Science and Technology of China</td>
<td></td>
<td></td>
</tr>
<tr>
<td>932A</td>
<td>Automated extraction of food-dependent sub-behaviours in freely moving C. elegans. Fernando Calahorro University of Southampton</td>
<td></td>
<td></td>
</tr>
<tr>
<td>933B</td>
<td>C. elegans ryanodine receptor mutations equivalent to human myopathic variants have presynaptic effects. Ian Hope University of Leeds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>934C</td>
<td>Neuromedin U signaling regulates memory retrieval of learned salt avoidance through distinct navigational decisions in C. elegans. Jan Wattyeune KU Leuven</td>
<td></td>
<td></td>
</tr>
<tr>
<td>935A</td>
<td>Encoding principles of a compact sensory system. Eduard Bokman Hebrew University</td>
<td></td>
<td></td>
</tr>
<tr>
<td>936B</td>
<td>Exploring regulatory mechanism of chemotaxis towards preferred salt concentration through DAG/PKC signaling. Shingo Hiroki University of Tokyo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>937C</td>
<td>Interactions between pre-synaptic modulators of dopaminergic transmission. Kanisha Clark Delaware State University</td>
<td></td>
<td></td>
</tr>
<tr>
<td>938A</td>
<td>WD40-repeat proteins promote the stability of the deubiquitinating enzyme USP-46 and surface levels of the glutamate receptor GLR-1. Molly Hodul Tufts University Sackler School of Graduate Biomedical Sciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>939B</td>
<td>unc-17 allelic suppression by a moonlighting interaction. James Rand Oklahoma Center for Neuroscience</td>
<td></td>
<td></td>
</tr>
<tr>
<td>940C</td>
<td>The GPCR kinase GRK-2 acts in premotor interneurons to positively regulate NCA channel activity. Irini Topalidou University of Washington</td>
<td></td>
<td></td>
</tr>
<tr>
<td>941A</td>
<td>Age-appropriate coordination of behavior and reproductive physiology via a shared neuronal circuit. Ilya Ruvinsky Northwestern University</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
942B The Role of Ga_q-coupled Neurotransmitter GPCRs in the *C. elegans* Egg-Laying Circuit. Kimberly Wei Yale University

943C Characterizing the function of CPD in *C. elegans*. Jennifer Bocanegra University of Washington

944A PVF-1/VER signaling regulates GLR-1 glutamate receptor surface levels to control behavior. Eric Luth Simmons University

945B Gonadal maturation changes chemotaxis to a food-associated odorant through a guanylyl cyclase GCY-28. Manabi Fujiwara Grad Sch Sci, Kyushu Univ

946C Updated Tokuyasu method for cryo correlative light and electron microscopy of *C. elegans* ventral nerve cord. Malan Silva University of Utah

948B How does an animal move? An integrative model of *C. elegans* forward locomotion. Tianqi Xu University of Science and Technology of China

949C Characterization of the mechanisms of adaptation to levamisole. Benjamin Bonneau Universite Claude Bernard Lyon 1

950A Design principles for storing memories in a compact neural network. Christian Pritz Hebrew University of Jerusalem

951B Stress-induced neuron remodeling reveals differential interplay between neurexin and environmental factors. Michael Hart University of Pennsylvania

952C The role of neuronal DEG/ENaC ion channel family members in organismal stress responses. Dionysia Petratou Institute of Molecular Biology and Biotechnology

953A FSHR-1 controls neuromuscular signaling balance in diverse physiologic conditions. Jennifer Kowalski Butler University

954B Characterisation of novel amine-gated ion channels and their involvement in synaptic transmission. Julia Morud Lekholm MRC Laboratory of Molecular Biology

955C Nested neuronal dynamics orchestrate a behavioral hierarchy across timescales. Harris Kaplan Institute of Molecular Pathology

956A Identifying biogenesis mechanisms for discrete subpopulations of extracellular vesicles. Rachael Gill University of Delaware

957B Glial-expressed SWIP-10 Regulates Mitochondrial Metabolism and Energetic Homeostasis Underlying Deficits in Dopamine Signaling and Neuronal Survival in *Caenorhabditis elegans*. Peter Rodriguez Florida Atlantic University

958C Uncovering Synaptic Ultrastructure of the Interneuron AIY. Laura Manning Yale University

959A *C. elegans* Piezo mechanosensitive channel, *pezo-1*, modulates muscular contraction during pharyngeal pumping. Jonathan Millet UTHSC

960B Mapping gap junctions in the *Caenorhabditis elegans* connectome. Christine Rehaluk University of Toronto

961C Interneuron Control of *C. elegans* Diapause Entry. Cynthia Chai California Institute of Technology

962A PVP neurons produce a branch ending in a cilium that lies over the egg-laying circuit. Nakeirah Christie Yale University

963B An epidermal guanylate kinase regulates cholinergic neuromuscular junctions. Salvatore Cherra University of Kentucky College of Medicine

964C A compact circuit of interneurons coordinates two central pattern generators to control forward movement. Wesley Hung Samuel Lunenfeld Research Inst

965A Feedback regulation of tetrahydrobiopterin (BH4) synthesis by GFRP in *C. elegans*. Curtis Loer Univ San Diego
POSTER SESSION LISTINGS

966B Understanding the development, plasticity, and function of synaptic asymmetry in C. elegans. Garrett Lee Albert Einstein College of Medicine

967C A post-developmental role for the pioneer neuron AVG in forward locomotion. Maggie Chang University of Toronto

968A NLP-12 signaling through the cholecystokinin receptor homologue CKR-1 regulates local food search behavior. Shankar Ramachandran University of Massachusetts Medical School

969B Imaging the Effects of Volatile Anesthetics on Neuronal Function in C. elegans. Gregory Wirak Boston University School of Medicine

970C Graph-theoretic analysis of whole-brain imaging reveals stimulus-specific changes in patterns of neural activity. Javier How Salk Institute

971A RIS dynamics during sleep and wakefulness in freely-moving worms. Mara Andrione University of Vienna

972B The role of cadherins at sensory synapses. Jordan Mitchell San Jose State University

973C Synapsin is required for cAMP-dependent neuropeptide release. Alexander Gottschalk Buchmann Institute, Goethe University

974A Elucidation of the molecular mechanisms that underlie neural circuit formation. Aruna Varshney San Jose State University

975B Mitochondrial H2O2 promotes neuropeptide release. Qi Jia Zilkha Neurogenetic Institute

976C Transcriptionally-regulated signaling pathways direct gap junction specificity within distinct developmental domains of the C. elegans motor circuit. Sierra Palumbos Vanderbilt University

977A Deciphering the genetic mechanisms that inhibit synapse formation. Ethan Fortes University of British Columbia

978B Irk-1/LRRK positively regulates neuropeptide secretion. Mingxi Hu Zilkha Neurogenetic Institute

979C Novel action of the muscarinic agonist arecoline on GABAergic motor neurons in the C. elegans locomotor circuit. Katherine McCulloch University of California, San Diego

980A Synthetic essentiality: Muscle controllability following multiple neuronal ablations in the C. elegans nervous system. Emma Towolson Center for Complex Network Research,

981B Dissecting the function of the cholinergic VC motor neurons in C. elegans egg-laying behavior. Richard Kopchock University of Miami

982C Sleep alters the physical architecture of sensory synapses in C. elegans. Fatima Farah San Jose State University

983A Live Imaging of the C. elegans Connectome. Keren Zhang Georgia Institute of Technology

984B The neuropeptidergic connectome of Caenorhabditis elegans. Ibnul Rafi Columbia University

985C A neural circuit controls sleep-active neuron depolarization to switch sleep states. Inka Busack MPI Biophysical Chemistry

Physiology - Aging and Stress

987B Gene disruptions suppress polyglutamine protein aggregation in C. elegans body wall muscle cells. Elise Kikis The University of the South

988C Age-related changes in muscle of a premature aging model in C. elegans. Sumino Yanase Daito Bunka University
989A Investigation of the expression and role of the MALT1 paracaspase in C. elegans. Julie Vérièpe University of Lausanne

990B C. elegans calcineurin modulates lifespan via SKN-1 signaling. Masaki Mizunuma Hiroshima Univ

991C Uncovering the novel roles NHR-49 plays in the hypoxia response pathway. Kelsie Doering Centre for Molecular Medicine and Therapeutics, UBC

992A The subcellular distribution of SAMS-1 is regulated by AMPK and PP2A in response to dietary changes in C. elegans. Yi Ang National Yang Ming university

993B Cell-nonautonomous regulation of intestinal DAF-16 activities and longevity by neuronal HSF-1. Yu-Hao Chang National Yang-Ming University

994C Regulation of Stress-Induced Protein Translation by Intracellular OGT-1 Mediated O-GlcNAcylation. Sarel Loewus University of Pittsburgh

995A Functions of CLIC proteins and TGF-beta signaling in heat stress. Jun Liang Borough of Manhattan Community College

996B Neuronal activity state governs the decline of experience-dependent plasticity with age. Qiaochu Li The University of Edinburgh

997C Translational regulation of non-autonomous mitochondrial stress response promotes longevity in C. elegans. Di Chen Nanjing University

998A Cold-induced suspended animation. Alicja Komur Institute of Bioorganic Chemistry Polish Academy of Sciences

999B Mitochondrial RNA dysregulation drives novel retrograde stress response. James Held Vanderbilt University

1000C Phosphofructokinase 2 regulates lifespan via TOR signaling in Drosophila and C. elegans. Wen-Chi Shen National Tsing Hua University

1001A Phosphatidylinositol transfer protein-1 regulates lifespan via TOR signaling in C. elegans. Yen-Hung Lin National Tsing Hua University

1002B Polymethoxyflavone 5-demethylnobiletin promotes DR induced autophagy dependent longevity in Caenorhabditis elegans. Shalini Trivedi CSIR-Central Institute of Medicinal and Aromatic Plants

1003C Intestinal oxidative stress induced by gliadin intake increases germ cell apoptosis in Caenorhabditis elegans. Hyemin Min Konkuk Univ

1004A A conserved p38-MAPK stress response protects cells from statins-mediated cytotoxicity. Irina Langier Goncalves University of Haifa at Oranim

1005B The FMRFamide neuropeptide FLP-6 may mediate the longevity effects of food sensation. Ru-Ting Syu Institute of Molecular Medicine

1006C Inter-Tissue Coordination of Mitochondrial Stress Response and Dynamics through Neurotransmitter and Neuropeptide Signaling. Li-Tzu Chen Institute of Molecular Medicine

1007A Swim exercise improves neuronal health in multiple C. elegans neurodegenerative models. Ricardo Laranjejpo Rutgers University

1008B AFD neurons regulate resistance to oxidative stress in C. elegans. Francesco Servello Northeastern University

1009C A Role for UNC-45 in Maintaining Myosin During Aging. Courtney Christian Emory University

1010A Effects of chronic stress on reproduction and endocytosis in C. elegans. Rosemary Plagens Florida Institute of Technology

1011B Low Translation Downstream of TOR Activates Myogene Expression and Enhances Health of Body Muscle in C. elegans. Juyoung Shim Mount Desert Island Biological
Laboratory

1012C Mapping a SKN-1 independent oxidative stress response mechanism involving NHR-49. [Brendil Sabatino] UBC

1014B Sensory neurons specifically regulate hydrogen-peroxide protection by target tissues via a multitstep hormonal relay. [Jodie Schiffer] Northeastern University

1015C Translational machinery determines hypoxic survival in *C. elegans*. [Mike Crowder] University of Washington

1016A *ptr-18/PTCHD* maintains quiescence of neural progenitor cells during L1 diapause by suppressing the activity of *grl-7*-through endocytosis. [Masamitsu Fukuyama] University of Tokyo

1017B Approach for identification of a novel mTORC1 target by using a machine learning system. [Takafumi Ogawa] Joslin Diabetes Center, Harvard Medical School

1018C Molecular pathways modulating mitochondrial superoxide stress. [Guoqiang Wang] Rutgers University

1019A A novel microfluidic device WormFlo to monitor the behavior of *C. elegans* at the adult stage. [Yusaku Ikeda] Institute of Physical and Chemical Research

1020B A non-conical Insulin-like signaling pathway promotes Q cell divisions during L1 arrest and characterization of the 40 Insulin-like peptides in *C. elegans*. [Ian Chin-Sang] Queen's Univ

1021C Identification of novel autophagy negative regulator modulating *C. elegans* reproductive lifespan. [Toshiharu Fujita] Osaka University

1022A Screen for new actors of muscle aging. [Charline Roy] Institut NeuroMyogene (INMG)

1023B Insulin/IGF signaling and vitellogenin provisioning mediate intergenerational adaptation to nutrient stress. [James Jordan] Duke University

1024C A Role for Apoptosis and Glycogen Storage in the Fertility Response to High-Glucose Diet. [Elizabeth Flynn] College of the Holy Cross

1025A A novel gene-diet interaction promotes mitochondrial-UPR mediated lifespan extension and host survival during infection. [Mustafi Raisa Amin] The University of Texas at Arlington

1026B *C. elegans* lifespan regulation by spatiotemporal activity of DAF-16. [Javier Huayta] North Carolina State University

1027C The roles of serotonin and apoptosis in the salubrious effects of a social signal on germline aging. [Erin Aprison] Northwestern University

1028A Identifying aging-associated genes by screening for early-onset phenotypes in *Caenorhabditis elegans*. [Daniel Midkiff] North Carolina State University

1029B Probing the proteostasis capacity of *C. elegans* upon aging. [Lilian Wong] Florey Institute of Neuroscience and Mental Health

1030C A High-Glucose Diet Reduces Male Fertility and Sperm Quality in *C. elegans*. [Kerry Larkin] Holy Cross College

1031A A Golgi protein MON-2 mediates longevity in respiration mutants via regulating proper cellular trafficking and increasing autophagy. [Yoonji Jung] Korea Advanced Institute of Science and Technology

1032B Prefoldin 6 links heat shock transcription factor 1 and DAF-16/FOXO to promote longevity in *daf-2* mutants. [Seokjin Ham] Korea Advanced Institute of Science and Technology

1033C A *daf-18/PTEN* variant uncouples longevity from impaired development and motility in *C. elegans* via tuning the activity of DAF-16/FOXO. [Hae-Eun Park] Korea Advanced...
Institute of Science and Technology

1034A Lactate and Pyruvate increase stress resistance and delay aging through ROS signaling. Arnaud Tauffenberger King Abdullah University of Science and Technology

1035B Effects of Cryopreservation on Life History and Muscle Function in the Nematode *Caenorhabditis elegans*. Jana Stastna Canterbury Christ Church University

1036C Diet-dependent effect on lifespan and metabolism: an ACADSB case study. Brecht Wouters KU Leuven

1037A The role of nuclear envelope components in the regulation of autophagy. Margarita Elena Papandreou IMBB-FORTH

1038B Links between altered fat metabolism and lifespan in different types of self-sterility in *C. elegans*. Siu Lee Cornell University

1039C Mitochondrial function and HIF-1-independent organismal survival under hypoxia. Ilias Gkikas IMBB-FORTH

1040A A *C. elegans* model for Wolfram Syndrome type 2. Christina Ploumi IMBB-FORTH

1041B The mRNA metabolism pathway regulates mitochondrial homeostasis during ageing in *C. elegans*. Ioanna Daskalaki IMBB-FORTH

1042C The Eternal Worm: Feedback Mechanisms in the Regulation of *C. elegans* Cell Size and Lifespan. Rachel Webster The Hospital for Sick Children

1043A Stress discrimination by body-wide, stochastic DAF-16/FoxO nuclear translocation pulses. Olga Filina AMOLF

1044B SMK-1 represses the transcriptional response to oxidative stress in post-reproductive adult *C. elegans*. Patrick Mitrano-Towers Villanova University

1045C Effect of Bacterial Diet on Aβ induced paralysis in *C. elegans*. Andy Lam University of Delaware

1046A Investigating the role of VAB-3 in the oxidative stress response. Joonyeob Yeo York University

1047B Unconventional functions of HIF-1 and the prolyl-hydroxylase EGL-9 in a heat stress response. Ji Na Kong MIT

1048C Altered ER-mitochondrial calcium homeostasis promotes proteostasis collapse in presenilin mutants. Kenneth Norman Albany Medical College

1049A Tart Cherry Increases Lifespan of *C. elegans*. Shasika Jayarathne Texas Tech University

1050B DAF-18 is a critical regulator of DAF-16-mediated immunity in adult *Caenorhabditis elegans*. Matthew Youngman Villanova University

1051C The identification and characterization of a prion-like protein in *C. elegans*. Joshua Newman MRC Laboratory of Molecular Biology

1052A Longevity Over the Counter: Investigating the Effects of Common Dietary Supplements on Aging. Ben Blue University of Washington

1053B Swertiamarin, a natural secoiridoid glycoside ameliorates dopamine deficit and elicits longevity in *Caenorhabditis elegans*. Taruna Pandey CSIR-Central Institute for Medicinal and Aromatic Plants

1054C Cloning of *sup-45*, a novel heat shock response regulator. Sophie Walton California Institute of Technology

1055A Copious longevity via increased translation and proteasome activity. Samantha Edwards KU Leuven

1056B An increased dietary to environmental copper ratio reduces toxicity endpoints in *Caenorhabditis elegans*. Catherine Shafer University of California, Los Angeles

1057C The role of FMRFamide-like signaling in regulating lifespan in *C. elegans*. Stephen Banse University of Oregon
1058A The tissue-specific role of NHR-49 in immunity versus longevity. **Nikki Naim** Rangos Research Center, UPMC Children’s Hospital

1059B The longevity-promoting factor, TCER-1, widely represses stress resistance and innate immunity. **Francis Gandhi** University of Pittsburgh

1060C EGL-9/HIF-1-mediated regulation of egg laying in response to hypoxic stress. **Calista Diehl** MIT

1061A Dietary restriction promotes healthspan via a glucagon-like signaling pathway in *C. elegans*. **Brian Onken** Rutgers, The State University of New Jersey

1062B Assessing health vs. longevity in the *Caenorhabditis* Intervention Testing Program. **Phu Huynh** Rutgers, the State University of New Jersey

1063C Defining the spatial requirements for AMPK in DR-mediated longevity. **Hannah Smith** Harvard T. H. Chan School of Public Health

1064A Investigating the role of intestinal cell-to-cell communication in reproduction and longevity. **Maureen Peters** Oberlin College

1065B Dissecting spatial and temporal requirement of TORC1 pathway components for longevity. **Arpit Sharma** Harvard school of public health

1066C Molecular mechanisms linking pre-mRNA splicing to dietary restriction and TORC1 mediated lifespan extension. **Porsha Howell** Harvard School of Public Health

1067A Developmental pentachlorophenol exposure causes growth delay, increased oxidative stress, and mitochondrial dysfunction in *Caenorhabditis elegans*. **Zachary Markovich** Duke University

1068B Transcriptional redirection of activated SKN-1/NRF2 abates the negative metabolic outcomes of a perceived pathogen infection. **James Nhan** University of Southern California

1069C Assessing metformin efficacy across species in the *Caenorhabditis* Intervention Testing Program. **Brian Onken** Rutgers, The State University of New Jersey

1070A Swim exercise in *Caenorhabditis elegans* protects dopaminergic neurons from age- and rotenone-induced degeneration. **Jessica Hartman** Duke University

1071B The role of the bZIP transcription factor ZIP-1 in the Intracellular Pathogen Response in *C. elegans*. **Vladimir Lazetic** University of California, San Diego

1072C Acute Cold Stress Induces Terminal Investment in *C. elegans*. **Leah Gulyas** Gettysburg College

1073A Investigating mTORC1’s role in presenilin-induced neurodegeneration in *C. elegans*. **Kerry Ryan** Albany Medical College

1074B Angiotensin converting enzyme (ACE) inhibitor extends *Caenorhabditis elegans* lifespan. **Brian Egan** Washington University in St. Louis

1075C The critical endoplasmic reticulum-associated protein quality control (ERQC) adaptation of the long-lived *Caenorhabditis elegans rpn-10(ok1865)* proteasomal mutant. **Meghna Chinchankar** UT Health San Antonio (UTHSCSA)

1076A Understanding the role of S-adenosyl methionine synthases under stress. **Adwait Godbole** University of Massachusetts Medical School

1077B Bridging the gap from raw data to result in large-scale aging experiments. **Rex Kerr** Calico Life Sciences

1078C Interactions of sphingolipid genes in cellular pathways to promote healthy aging. **Joycelyn Radeny** Juniata College

1079A Molecular mechanisms underlying pheromone-mediated lifespan regulation in *C. elegans*. **Andreas Ludewig** BTI, Cornell

1080B NDGA and Green Tea Extract reproducibly and robustly increase longevity, as evaluated using an updated *Caenorhabditis* Intervention Testing
Program (CITP) workflow. **Christine Sedore** University of Oregon

1081C The role of polyphosphate in aging *C. elegans*. **Bryndon Oleson** University of Michigan

1082A A Suite of Tools to Measure Spatiotemporal Patterns in *C. elegans*. **Nicolette Laird** Washington University

1083B Effect of a sugarcane polyphenol extract on growth, fertility and lifespan of *Caenorhabditis elegans*. **Matthew Flavel** The Product Makers

1084C High frequency longitudinal imaging reveals early-adult declines in movement. **Drew Sinha** Washington University School of Medicine in St. Louis

1085A The role of ribosomal DNA copy number in aging. **Ashley Hall** University of Washington

1086B Effect of mianserin on the lifespan of *Caenorhabditis elegans* is affected by the time of exposure and glucose supplementation. **Jency Thomas** La Trobe University

1087C Progranulin Polymorphisms in Aging and Stress Resistance. **Austin Wang** UCSF

1088A The *C. elegans* Myc-family of transcription factors coordinate the cellular adaptive response to dietary restriction. **Adam Cornwell** University of Rochester Me

1089B Loss of ATP synthase subunit OSCP/ atp-3 induces a detrimental post-developmental mitochondrial unfolded protein response (UPRmt) with mitochondrial permeability transition pore characteristics. **Suzanne Angeli** Buck Institute for Research on Aging

1090C Neuronal-specific inhibition of early-acting autophagy genes extends lifespan in *C. elegans*. **Yongzhi Yang** Sanford Burnham Prebys Medical Discovery Institute

1091A Pitfalls with Gompertzian Analysis of Lifespan distributions. **Eric Terry** Washington University in St. Louis

1092B Testing loss of muscle strength in *C. elegans* on International Space Station. **Purushottam Soni** Texas Tech University

1093C Uncovering Gene Expression Programs that Determine Individual Lifespan in *C. elegans*. **Matthew Mosley** Washington University in St. Louis

1094A Loss of O-GlcNacylation Suppresses the Activity of a *skn-1* Gain-of-Function Mutant. **Christian Turner** University of Southern California

1095B Probing Mechanisms of Selective Autophagy Relevant to Aging. **Ee Phie Tan** Sanford Burnham Prebys

1096C A CUL4-DDB1 E3 ubiquitin ligase complex regulates both DNA repair and oxidative stress responses. **Brett Spatola** University of Southern California

1097A The Role of ELT-7 in Mediating Lifespan Extension by Enhancing Intestinal Barrier Function. **Tanuja Peiris** Buck Institute for Research in Aging

1098B High throughput exopher whole genome RNAi screening with machine vision. **Ilija Melentijevic** Rutgers

1099C MitoNEET as a therapeutic target to treat neural circuit decline in Alzheimer’s Disease. **Jacob Boos** West Virginia University

1100A Folic acid based Carbon Dots increase lifespan. **jian huang** soochow university

1101B Discovering regulators of neuropeptide signaling. **Jacqueline Lo** Buck Institute for Research on Aging

1102C The selective autophagy receptor p62/SQST-1 exerts tissue-specific effects on PolyQ aggregation. **Reina Lee** Sanford Burnham Prebys Medical Discovery Institute

1103A Investigating the role of oxytocin signaling in aging. **Katelyn Adam** Buck Institute for Research on Aging
1104B Reduced protein translation leads to hypoxia resistance in germline ablated animals. **Marc Van Gilst** University of Washington

1105C Changes to the *C. elegans* Gut Microbiome Associated with Aging. **Juhyun Cho** UC Berkeley

1106A Disruption of mitochondrial dynamics increases stress resistance through activation of multiple stress response pathways in *C. elegans*. **Thomas Liontis** McGill University

1107B 3-METHYL-3-BUTEN-1-OL (ISOPRENOL) confers longevity and stress tolerance in *CAENORHABDITIS ELEGANS*. **Swapnil Pandey** CSIR-National Botanical Research Institute

1108C Impact of Meiotic-Gene Mutations on Lifespan and Health Span. **Thayjas Patil** University of Pittsburgh

1109A Mitochondrial metabolic switch during aging resulted in the disturbed myofiber connectivity in *C. Elegans*. **Farida Nirmala** University of Science and Technology

1110B Protein kinase MEKK-3 mediates genetic and physiological activation of cytoprotective pathways in extracellular matrix mutants. **Keon Wimberly** University of Florida

1111C Ca2+ overload due to mitochondrial dysfunction causes muscle ECM degradation. **Atsushi Higashitani** Tohoku University

1112A Measuring ageing during life not death: Automated quantification of movement provides a novel approach to discover drugs that slow ageing. **David Weinkove** Durham University

1113B *Sptl-1* Knockdown to Test Sphingolipid Function on Adult Physiology. **Julia Witkowski** Juniata College

1114C Indoles from commensal bacteria extend healthspan. **robert Sonowal** emory university

Physiology - Dauer Larvae

1115A Genetic basis and biological significance of altered acetylcholine signaling during diapause in *Caenorhabditis elegans*. **Sangwon Son** Seoul National University

1116A *daf-42* is an Essential Gene for Dauer Development of *Caenorhabditis elegans*. **Daisy Lim** Seoul National University

1117C Genetic markers enable the verification and manipulation of the dauer entry decision. **Pei Shih** Calif Institute of Technology

1118B FKH-7/FOXP transcription factor mediates developmental decision-making. **Cynthia Chai** California Institute of Technology

1119B Pristionchus pacificus Dauer Constitutive Mutants with Dauer-Specific Molting Defects. **Heather Carstensen** California State University, Northridge

Physiology - Metabolism

1120A Sphingolipidomic Analysis of *C. elegans* Reveals Development- and Environment-dependent Metabolic Features. **Xiaoxiang Cheng** University of Macau

1121C Identification of the ubiquinone pathway as a suppressor of Myotonic Dystrophy-associated toxicity. **Joana Teixeira** Biotechnology Institute, University of Helsinki

1122A Using *C. elegans* as a model to study the physiology roles of G6DP in
development. Daniel Tsun-Yee Chiu Chang
Gung University

1125B The ER chaperone ENPL-1 acts outside
the ER to promote insulin secretion in concert
with oxidized ASNA-1. Agnieszka
Podraza Gothenburg University

1126C Characterizing the roles of the ABC
transporter MRP-1 in fat metabolism. Aneta
Bilnicka Institute of Bioorganic Chemistry
Polish Academy of Sciences

1127A Utilizing the Genetic Diversity of C.
elegans for Unknown Metabolite
Identification. Amanda Shaver University of
Georgia

1128B Understanding Multiple Mitochondrial
Dysfunctions Syndrome with C.
elegans. Peter
Kropp NIDDK, NIH

1129C Investigating the mechanism of the
cell-nonautonomous roles of nuclear hormone
receptor NHR-49 in the nervous system
of Caenorhabditis elegans. Saebom
Kwon Yonsei University Wonju College of
Medicine

1130A Mutation in a novel P.
aeruginosa acyl-CoA dehydrogenase enhances
mitochondrial UPR activity and host survival
during infection. Siraje Mahmud University of
Texas Arlington

1131B The mitophagy receptor FUNDC1
contributes to hypoxia-reoxygenation injury
in C. elegans. Yunki Lim University of Rochester
Medical Center

1132C Glucose metabolism among different
tissues regulates mating performance and
durability. Yufeng Wan Texas A&M University

1133A Understanding muscle dysfunction
associated with purine nucleotide cycle
deficiencies. Latisha Franklin Pennsylvania
State University

1134B A Phenotypic C. elegans Screen To
Identify Selective Suppressors of Antipsychotic-
induced Weight Gain and Overeating. Michael
Petrascheck The Scripps Research Insitute

1135C Mitochondrial content determines
lifespan through metabolic reprogramming. Eirini Lionaki IMBB-FORTH

1136A WormJam, a consensus genome-scale
metabolic model. Celia Raimondi Babraham
Institute

1137B A delicate balance between bacterial
iron and reactive oxygen species supports
optimal C. elegans development. Jingyan
zhang University of Massachusetts Medical
School

1138C Muscle-Specific Transcriptome
Rearrangements During the Progression of
Duchenne Muscular Dystrophy in C.
elegans. Marco Mangone Arizona State
University

1139A Investigating the Effects of Bacterial
Metabolites on Host Lipid Metabolism. Dilip
Yadav Umass, Medical School

1140B New diets challenge the connection
between food on life history traits and
lifespan. Nicole Stuhr University of Southern
California

1141C Cadmium is an activating ligand of
HIZR-1. Brian Earley Washington University in
Saint Louis

1142A A let-23 gain-of-function mutant
suppresses lipid synthesis via the LET-60/ Ras
pathway and the lipid synthesis transcription
factor SBP-1. Matt Crook Texas A&M
University-San Antonio

1143B Worms, drugs, and the anaerobic
electron transport chain: the road to
anthelmintic drug discovery. Samantha Del
Borrello University of Toronto

1144C Cytosolic iron–sulfur protein assembly
(CIA) is important for pyrimidine metabolism
and immortal germline in C. elegans. Xiao
Li University of Calgary

1145A Labeling Reactive Metabolites in C.
elegans Reveals Novel Niacin Bearing
Ascarosides Associated with Longevity. Henry
Le Cornell University
1146B Modular pheromone assembly by hydrolase-like enzymes in *C. elegans* gut granules. Chester Wrobel Cornell University Department of Chemistry and Chemical Biology

1147C Tissue specific functions of adenylosuccinate lyase. Abdul Kareem AlShaheeb Pennsylvania State University

1148A Cholesterol is required for proper immunity against *Pseudomonas aeruginosa* infection. Benson Otarigho OREGON HEALTH & SCIENCE UNIVERSITY

1149B Modulation of metabolism by FSTR-1/F57F4.3 and FSTR-2/F57F4.4. Morris Maduro University of California, Riverside

1150C Biosynthesis of the nemamides in *C. elegans*. Rebecca Butcher University of Florida

1151A Does mitochondrial toxicant exposure during development cause later life consequences that are inherited by the next generation? Christina Bergemann Duke University

1152B The Role of NHR-49/PPARα in Modulation of Mitochondrial Function in Long-lived Germline-less Animals. Hye Jin Hwang University of Pittsburgh

1153C Culinary spices reduce the body fat content of Caenorhabditis elegans. Abdullah Almotayri Latrobe University

1154A Nematode-derived metabolite ascr#18 mediates plant-nematode interactions. Francisco Tenjo Cornell University

1155B Identification and regulation of surface barrier lipid composition of *C. elegans* by the DBL-1/TGF-β signaling pathway. Bhoomi Madhu Texas Woman’s University

1156C Caenorhabditis elegans mitochondrial bioenergetics during development: advances using the Seahorse Extracellular Flux Analyzer. Danielle Mello Duke University

1157A In vitro production of prostaglandins and their effects on sperm motility in *C. elegans*. Ekta Tiwary University of Alabama at Birmingham

1158B Incomplete proline catabolism depletes FAD pools and abolishes male sperm competitive advantages. Chia-An Yen University of Southern California

1159C Sulfolipids from *P. pacificus*. Maro Kariya Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University

1160A A rapid untargeted technique for identifying activated compounds in living systems. Yan Yu Cornell University

1161B Defining the impact of O-GlcNAc on fertility of *C. elegans* males. Daniel Konzman NIH - NIDDK

1162C Mutations affecting metal homeostasis in *C. elegans*. Xavier Anderson Washington University in St. Louis

Physiology - Novel Technologies

1163A 3D cellular imaging in behaving *C. elegans* by Sub-voxel-resolving Light-sheet Add-on Microscopy. Yi Li College of Life Science & Technology, HUST

1164B Development of a worm picking robot. Anthony Fouad University of Pennsylvania

1165C 3D cellular imaging in behaving *C. elegans* by Sub-voxel-resolving Light-sheet Add-on Microscopy. Lili Chen Huazhong University of Science and Technology

1166A Automated high-throughput analysis of *C. elegans* aging using the Worm Collective Activity Monitoring Platform (WormCamp). Christopher Fang-Yen University of Pennsylvania

1167B Functional evaluation of muscle contractile apparatus genes in *C. elegans* using burrowing and NemaFlex assays. Leila Lesanpezeshki Texas Tech University
1158C Resolving subtle mutant and treatment effects through pharyngeal pumping variability assessment in the nematode c. elegans. Michael Harris California State University Long Beach

1159A WormBeat: A Strategy to evaluate Pharyngeal Pumping Variability in the Nematode C. elegans. Michael Harris California State University Long Beach

1160B NemaLife Machine: An automated microfluidic system for whole-life studies in C. elegans. Taslim Anupom Texas tech University

1161C CeleScreen: Innovative method of assessing toxicity in whole organism. Song-Hua Lee Celescreen SAS

1162A Developing new cures for soil-transmitted helminth infections. Hanchen Li University of Massachusetts Medical School

1163B Looking for anthelmintics and their drug targets through a new lens, literally. Taylor Davie University of Toronto

Physiology - Pathogenesis

1164C Caenorhabditis elegans flight and fight response to pathogenic bacteria. Varsha Singh Indian Institute of Science

1165A Caenorhabditis elegans-bacteria interactions: Neuronal Control of Innate Immune Response. Anjali Gupta Indian Institute of Science

1166B Nuclear hormone receptor NHR-49 shapes immune-metabolic response of Caenorhabditis elegans to Enterococcus faecalis infection. MadhumantiDasgupta Indian Institute of Science

1167C Deciphering the interactions between skin-penetrating parasitic nematodes and bacteria. Taylor Brown UCLA

1168A The fatty acid oleate is required for innate immune activation and pathogen defense in Caenorhabditis elegans. Sarah Anderson University of Massachusetts Medical School

1159B Immunoglobulin-like and leucine rich repeat domains protein, IGLR-2, is required for defense against Enterohemorrhagic Escherichia coli infection in C. elegans. Cheng-Ju Kuo National Cheng Kung University

1160C A fight-and-flight response against bacterial pathogens in Caenorhabditis elegans. Jogender Singh Oregon Health & Science University

1161A Use of C. elegans as an Animal Model to Study Shigella Pathogenesis. Pamodha Somasiri The Australian National University

1158B Deciphering the responses of skin-penetrating nematodes to carbon dioxide. Navonil Banerjee University of California Los Angeles

1159C Effect of Triclosan on Odorant Avoidance. Edith Myers Fairleigh Dickinson University, Florham Campus

1160A Inhibition of mul-1 Results in Reduced Accumulation of Bacteria and Enhanced Resistance to Pathogens During C. elegans Infection. Casandra Hoffman Oregon Health and Science University

1161B Prednisone improves mitochondrial function but not excitation contraction coupling in dys-1. Rebecca Ellwood University of Nottingham

1162C Characterizing the impact and regulation of host lipid metabolism on microsporidia infection in Caenorhabditis elegans. JiHae Jeon University of Toronto

1163A Identification of mitochondrial UPR regulated genes that protect the host during pathogen infection. Mohammed Adnan Qureshi University of Texas at Arlington

1164B The CDK-1-formin signal axis confers the microvillar effacement during enterohemorrhagic E. coli infection. Cheng Rung Huang National Cheng Kung University

1165C Redundant functions of ugt genes in modulating benzimidazole sensitivity in the nematode Caenorhabditis elegans. Nidhi Sharma University of Calgary
1190A Genetic basis of the interaction between *Stenotrophomonas maltophilia* and *Caenorhabditis elegans* from both host and pathogen perspectives. Leah Radeke University of Nebraska-Lincoln

1191B Identification and characterization of a *Caenorhabditis elegans* gene that provides resistance to microsporidia. Hala Tamim El Jarkass University of Toronto

1192C A comparison of methods used to assess bacterial virulence in *Caenorhabditis elegans* using a collection of clinical *Pseudomonas aeruginosa* strains. Mercedes Di Bernardo McMaster University

1193A Determinants of Signaling Specificity for DBL-1/BMP in the Immune Response of the Nematode *Caenorhabditis elegans*. Emma Ciccarelli Queens College

1194B A transcriptional response leads to inherited immunity to microsporidia. Winnie Zhao University of Toronto

1195C The neuropeptide receptor NMUR-1 mediates distinct innate immune responses to different pathogens in *Caenorhabditis elegans*. Phillip Wibisono Washington State University

1196A Effect of altering gravity on TGF-beta signaling during organogenesis and innate immunity in the model animal *C. elegans*. Loganathan Vigneshwari Yonsei University

1197B Exploring the role of clec-4 and its paralogs in *C. elegans* immunity. Barbara Pees Zoological Institute

1198C Olfactory neuron protein promotes intestinal immune homeostasis to ensure evolutionary fitness. Kyle Foster UMass Medical School

1199A Regulation of host defense responses by nuclear hormone receptors in *C. elegans* upon *S. aureus* infection. Debanjan Goswamy University of Massachusetts Medical School

1200B Robust phenotyping of a *C. elegans* model of muscular dystrophy reveals clinically relevant phenotypes and drug responses. Jennifer Hewitt Texas Tech University

1201C *Carnobacterium inhibits* a bacterium innocuous for its fish natural host kills *Caenorhabditis elegans*. Carolaing Gabaldon Universidad Mayor

1202A Modeling Long-QT Syndrome in *C. elegans*. Rosie Bauer National Institutes of Health

1203B High-throughput phenotyping of *C. elegans* wild isolates reveals specific resistance and susceptibility traits with multiple microsporidia species. Calvin Mok University of Toronto

1204C Linking mitochondrial dysfunction during development with pathogen resistance later in life. Danielle Mello Duke University

1205A Target molecules of *Bacillus thuringiensis* crystal proteins in *C. elegans*. YouMie Kim University of Massachusetts Medical School

1206B Modeling NGLY1 Deficiency in *C. elegans*. Carina Graham National Institutes of Health

1207C Developmental slowing of *Caenorhabditis elegans* larvae on *Pseudomonas aeruginosa* strain CF18. Zeynep Mirza University of Massachusetts Medical School

1208A Role of ATP-binding cassette transporters in immunity. Jonathan Lalsiamthara Oregon Health & Science University

1209B Physical exertion exacerbates deterioration in an animal model of Duchenne muscular dystrophy. Kiley Hughes Illinois State University

1210C Developing nematode-specific kinase inhibitors to combat parasitic nematodes. Jessica Knox University of Toronto

1211A Development of a novel assay to
identify genes involved in host infection by parasitic nematodes. **Andres Vidal-Gadea** Illinois State University

1212B A new *Enterobacteriaceae* species that binds to the intestinal epithelial cells in the lumen of *C. elegans* and *C. briggsae*. **Emily Morgan** San Diego State University

1213C Cocoa reduces Amyloid-β toxicity and increases lifespan in a transgenic *Caenorhabditis elegans*.* Munagamage Dona Mihiri Munasinghe La Trobe University

1214A Characterizing role of the DBL-1/TGF-β signaling pathway in innate immune defenses in *C. elegans* against a panel of Gram negative and Gram positive bacteria. **Bhoomi Madhu** Texas Woman’s University

1215B Muscle degeneration precedes neurodegeneration in a *C. elegans* models of spinal muscular atrophy. **James Julian Doyle** RI-MUHC

1216C Role of host damage in the interactions between *P. aeruginosa* and *C. elegans*. **Alejandro Vasquez-Rifo** UMass Medical School

1217A Learning from dysbiosis: host genetic regulators of the microbiome converge on alimentary system function. **Mario Loeza Cabrera** Baylor College of Medicine

1218B Fighting helminth parasites using microbial toxins and natural compounds. **Hala Zahreddine Fahs** NYU Abu Dhabi

1219C Burrowing as a Genetic Screen of Neuromuscular Functioning in *Caenorhabditis elegans*. **Matthew LeBlanc** Texas Tech University

1220A *Caenorhabditis elegans* as a model for searching compounds capable of preventing Spinocerebellar Ataxia Type 3. **Maria Elena Regonesi** University Milano-Bicocca

1222C Discovery of a *Buttiauxella* species that adhere to intestinal cells may represent a commensal microbe of wild *C. elegans*. **Jonah Faye Longares** San Diego State University

Education - Education

1223A Exploring gene-by-environment interactions using microbes and nutraceuticals. **Hannah Seidel** Eastern Michigan University

1224B Implementation of a Model for Team Based Undergraduate Research: Toxicity studies on UGT mutants of *Caenorhabditis elegans*. **Muhammad Zaka Asif** University of Georgia

1225C Toxicity of 1-hydroxyphenazine on ugt-1 mutants of *Caenorhabditis elegans*. **Jane Guo** University of Georgia

1226A Preparing the life science technicians of the future: An integrative approach to learning. **Samantha Hughes** HAN University of Applied Sciences

1227B Development of a UGT Mutant Library in *Caenorhabditis elegans*. **Hailey Goldberg** University of Georgia

1228C A curriculum-wide *C. elegans*-based “Pipeline CURE” provides an alternative to apprentice-style research experiences for biology student cohorts at a primarily undergraduate institution. **Karen Schmeichel** Oglethorpe University

1229A A majors-level Intro Bio course consisting of online videos is at least as good as a traditional class. **Morris Maduro** University of California, Riverside
1230B Incorporation of CRISPR/Cas9 into a semester-long investigative lab on the cell biology of C. elegans. Sara Olson Pomona College

1231C Autocrine insulin signaling during development mediates plasticity in the function of a C. elegans sensory neuron. Lauren Bayer Horowitz NYU Langone Medical Center

1232A Different steroid hormones modulate protein homeostasis in Caenorhabditis elegans by cell-nonautonomous signalling. Ana Pilar Gomez Escribano Health Research Institute

1233B Visualizing C. elegans transcripts reveals distinct dynamics of membrane-associated genes. Hongjie Zhang University of Macau, China
<table>
<thead>
<tr>
<th>Name</th>
<th>Page References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arribere, Joshua A.</td>
<td>359A</td>
</tr>
<tr>
<td>Artal-Sanz, Marta.</td>
<td>1137B</td>
</tr>
<tr>
<td>Artan, M.</td>
<td>103, 1031A</td>
</tr>
<tr>
<td>Artiles, Karen L.</td>
<td>12</td>
</tr>
<tr>
<td>Artyukhin, A.</td>
<td>131</td>
</tr>
<tr>
<td>Asahina, Masako</td>
<td>582B</td>
</tr>
<tr>
<td>Asadi, A.</td>
<td>1089B</td>
</tr>
<tr>
<td>Asano, S.</td>
<td>301C</td>
</tr>
<tr>
<td>Aschner, M.</td>
<td>870B*, 871C</td>
</tr>
<tr>
<td>Aschner, Michael</td>
<td>857A</td>
</tr>
<tr>
<td>Aseltine, L.</td>
<td>580C</td>
</tr>
<tr>
<td>Ashe, A.</td>
<td>529C</td>
</tr>
<tr>
<td>Ashe, Alyson,</td>
<td>517C, 530A, 532C*</td>
</tr>
<tr>
<td>Ashkavand, Z.</td>
<td>1073A</td>
</tr>
<tr>
<td>Ashley, G.</td>
<td>285B</td>
</tr>
<tr>
<td>Asif, M.</td>
<td>1224B*, 1225C</td>
</tr>
<tr>
<td>Ashraf, Jasmine</td>
<td>33</td>
</tr>
<tr>
<td>Assie, A.</td>
<td>464A</td>
</tr>
<tr>
<td>Asif, Muhammad Z.</td>
<td>1227B</td>
</tr>
<tr>
<td>Austin, Sarojani</td>
<td>388C, 389A</td>
</tr>
<tr>
<td>Authors 1 and 2 equally</td>
<td>contributed</td>
</tr>
<tr>
<td>Authors M. Bah-Tahe and</td>
<td>R. Dima equally</td>
</tr>
<tr>
<td>present the poster.,</td>
<td>contributed and will both</td>
</tr>
<tr>
<td>Awajji, T.</td>
<td>49</td>
</tr>
<tr>
<td>Awal, M. R.</td>
<td>917A, 969B</td>
</tr>
<tr>
<td>Awasthi, A.</td>
<td>327B</td>
</tr>
<tr>
<td>Aydin, A.</td>
<td>179</td>
</tr>
<tr>
<td>Ayoub, C.</td>
<td>464A, 1217A</td>
</tr>
<tr>
<td>ayyadevara, srinivas,920A*</td>
<td></td>
</tr>
<tr>
<td>Azad, Rajeev,</td>
<td>578A</td>
</tr>
<tr>
<td>Azzi, C.</td>
<td>124*</td>
</tr>
<tr>
<td>Baer, Charles F.</td>
<td>494A</td>
</tr>
<tr>
<td>Baesler, J.</td>
<td>870B*, 871C</td>
</tr>
<tr>
<td>Bah-Tahe, M.</td>
<td>248A*</td>
</tr>
<tr>
<td>Bai, J.</td>
<td>930B</td>
</tr>
<tr>
<td>Bai, JiHong,</td>
<td>940C</td>
</tr>
<tr>
<td>Bai, Xiaofei,</td>
<td>367C*</td>
</tr>
<tr>
<td>Bainbridge, C.</td>
<td>750B*</td>
</tr>
<tr>
<td>Baiocchi, T.</td>
<td>501B, 674A*</td>
</tr>
<tr>
<td>Baiocchi, T.</td>
<td>455A</td>
</tr>
<tr>
<td>Baird, S.</td>
<td>497A</td>
</tr>
<tr>
<td>Bajtyz, J.</td>
<td>203A</td>
</tr>
<tr>
<td>Bajuszova, Viktoria,</td>
<td>323A</td>
</tr>
<tr>
<td>Balasubramaniam,</td>
<td></td>
</tr>
<tr>
<td>Meenakshisundaram,</td>
<td>920A</td>
</tr>
<tr>
<td>Baldridge, D.</td>
<td>597B</td>
</tr>
<tr>
<td>Balikosa, Yves</td>
<td>1187A</td>
</tr>
<tr>
<td>Ballard, Joseph</td>
<td>391C</td>
</tr>
<tr>
<td>Ballato, Elliott</td>
<td>121</td>
</tr>
<tr>
<td>Balmir, F.</td>
<td>287A</td>
</tr>
<tr>
<td>Baltaci, O.</td>
<td>779A*</td>
</tr>
<tr>
<td>Ban, Steven</td>
<td>304C</td>
</tr>
<tr>
<td>Bandi, S.</td>
<td>469C</td>
</tr>
<tr>
<td>Banerjee, N.</td>
<td>968A, 1120C</td>
</tr>
<tr>
<td>Baradwaj, A.</td>
<td>10, 982C</td>
</tr>
<tr>
<td>Barger, Steven</td>
<td>920A</td>
</tr>
<tr>
<td>Bargmann, C.</td>
<td>135, 138*</td>
</tr>
<tr>
<td>Bargmann, CI.</td>
<td>167</td>
</tr>
<tr>
<td>Banse, Stephen</td>
<td>484C, 742C, 1057C*</td>
</tr>
<tr>
<td>Bao, Z.</td>
<td>72, 166, 399B, 403C, 799C, 805C</td>
</tr>
<tr>
<td>Bao, Zhichong</td>
<td>402B</td>
</tr>
<tr>
<td>Barabási, A.-L.</td>
<td>980A</td>
</tr>
<tr>
<td>Barcikowski, J. L.</td>
<td>980B*</td>
</tr>
<tr>
<td>Baro, Maureen</td>
<td>188</td>
</tr>
<tr>
<td>Barriere-Cain, Rio</td>
<td>531B*</td>
</tr>
<tr>
<td>Barrientos, C.</td>
<td>1168C</td>
</tr>
<tr>
<td>Barroso, Consuelo</td>
<td>265C</td>
</tr>
<tr>
<td>Barry, N.</td>
<td>301C</td>
</tr>
<tr>
<td>Barton, K.</td>
<td>693B</td>
</tr>
<tr>
<td>Barucci, G.</td>
<td>83*</td>
</tr>
<tr>
<td>Baskoylu, S. N.</td>
<td>734A</td>
</tr>
<tr>
<td>Basso, K. B.</td>
<td>1150C</td>
</tr>
<tr>
<td>Bastick, J.</td>
<td>434A</td>
</tr>
<tr>
<td>Basu, Atrayeet</td>
<td>880C*</td>
</tr>
<tr>
<td>Battula, S.</td>
<td>368A</td>
</tr>
<tr>
<td>Bau, H. H.</td>
<td>682C</td>
</tr>
<tr>
<td>Bauer, J.</td>
<td>364C*</td>
</tr>
<tr>
<td>Bauer, R.</td>
<td>1202A*</td>
</tr>
<tr>
<td>Baugh, L. R.</td>
<td>56, 514C</td>
</tr>
<tr>
<td>Baugh, R.</td>
<td>491A, 1023B, 1151A</td>
</tr>
<tr>
<td>Baugh, R. L.</td>
<td>1204C</td>
</tr>
<tr>
<td>Baumgarten, E.</td>
<td>23</td>
</tr>
<tr>
<td>Bautista, N. M.</td>
<td>390B</td>
</tr>
<tr>
<td>Baxter, K.</td>
<td>839A</td>
</tr>
<tr>
<td>Bayer, E. A.</td>
<td>924B*</td>
</tr>
<tr>
<td>Bayer Horowitz, L.</td>
<td>1231C*</td>
</tr>
<tr>
<td>Baytek, G.</td>
<td>150, 330B</td>
</tr>
<tr>
<td>Bazant, Wojtek</td>
<td>504B</td>
</tr>
<tr>
<td>Bazopouloou, D.</td>
<td>1081C</td>
</tr>
<tr>
<td>Beauvoin-Chabot, C.</td>
<td>29</td>
</tr>
<tr>
<td>Beaulerepaire, E.</td>
<td>2</td>
</tr>
<tr>
<td>Becker, S. F.</td>
<td>151*</td>
</tr>
<tr>
<td>Beer, K. B.</td>
<td>296A</td>
</tr>
<tr>
<td>Beer, Randall D.</td>
<td>764A</td>
</tr>
<tr>
<td>Beece-Sims, S.</td>
<td>528B</td>
</tr>
<tr>
<td>Beece-Sims, Sara</td>
<td>934C</td>
</tr>
<tr>
<td>Beets, Isabel</td>
<td>35, 984B</td>
</tr>
<tr>
<td>Beevi, Z.</td>
<td>982C</td>
</tr>
<tr>
<td>Begnaud, S.</td>
<td>247C</td>
</tr>
<tr>
<td>Behm, C.</td>
<td>1181A</td>
</tr>
<tr>
<td>Bekas, Kimberly N.</td>
<td>341A*</td>
</tr>
<tr>
<td>Belew, M. Y.</td>
<td>912B*</td>
</tr>
<tr>
<td>Belfi, Alexandra</td>
<td>408B</td>
</tr>
<tr>
<td>Bellotti, S.</td>
<td>317A</td>
</tr>
<tr>
<td>Bellotti, Sebastian</td>
<td>188</td>
</tr>
<tr>
<td>Belmadani, M.</td>
<td>695A</td>
</tr>
<tr>
<td>Belmace, G.</td>
<td>618B</td>
</tr>
<tr>
<td>Belnap, David</td>
<td>946C</td>
</tr>
<tr>
<td>Belville, A. J.</td>
<td>242A*</td>
</tr>
<tr>
<td>Bembenek, J.</td>
<td>211C</td>
</tr>
<tr>
<td>Benard, C.</td>
<td>812A</td>
</tr>
<tr>
<td>Bénard, C., 37, 248A, 800A</td>
<td>807B</td>
</tr>
<tr>
<td>Benard, Claire</td>
<td>814C</td>
</tr>
<tr>
<td>Benavidez, J.</td>
<td>120, 335A*</td>
</tr>
<tr>
<td>Benbow, S. J.</td>
<td>869A*, 873B</td>
</tr>
<tr>
<td>Benedetti, K.</td>
<td>10, 972B</td>
</tr>
<tr>
<td>Benedict, W.</td>
<td>1142A</td>
</tr>
<tr>
<td>Benian, G.</td>
<td>187, 1009C</td>
</tr>
<tr>
<td>Benian, G. M.</td>
<td>1167B</td>
</tr>
<tr>
<td>Benian, Guy</td>
<td>406C</td>
</tr>
<tr>
<td>Bennett, Karen</td>
<td>85</td>
</tr>
<tr>
<td>Ben Shushan, I.</td>
<td>200</td>
</tr>
<tr>
<td>Ben-Yakar, A.</td>
<td>303B, 846B, 852B</td>
</tr>
<tr>
<td>Berardi, S.</td>
<td>395A*</td>
</tr>
<tr>
<td>Berg, M.</td>
<td>1105C</td>
</tr>
<tr>
<td>Berg, Maureen</td>
<td>468B</td>
</tr>
<tr>
<td>Bergemann, C.</td>
<td>1151A*</td>
</tr>
<tr>
<td>Bergemann, C. M.</td>
<td>1204C</td>
</tr>
<tr>
<td>Berger, D. R.</td>
<td>9</td>
</tr>
<tr>
<td>Berger, Simon</td>
<td>365A</td>
</tr>
<tr>
<td>Berghoff, E.</td>
<td>983A</td>
</tr>
</tbody>
</table>
A. Berkowitz, L. A., 898C
A. Berkýurek, A., 81
A. Berkýurek, A. C., 534B
A. Berlemont, R., 1168C
A. Berlemont, Renaud, 1169A
A. Bernard, F., 565C
A. Bernazzani, S. M., 318B *
A. Bernstein, K., 287A
A. Berner, R. Z., 108
A. Berriman, Matthew, 504B
A. Berto, A., 213B *
A. Berry, Faith, 1052A
A. Berry, Brandon, 1131B
A. Beshers, C., 356A
A. Bertrand, V., 338A, 355C
A. Bessereau, J-L., 45
A. Besseling, J., 985C
A. Betist, M., 806A
A. Betist, M. C., 117
A. Bettinger, J. C., 342B
A. Bhalla, N., 283C
A. Bhalla, Needhi, 274C
A. Bhandari, N., 257A *
A. Bhar, S., 162
A. Bhargava, V., 394C
A. Bhat, Jaffar M., 132 *
A. Bhat, J. M., 782A
A. Bhattacharya, R., 968A
A. Bhattacharya, Sushila, 570B *
A. Bhaumik, Dipa, 1062B
A. Bhaumik, D., 1069C, 1080B
A. Bhat, J., 920A
A. Bommagani, Shoban 920A
A. Bonacossa-Pereira, I., 913C *
A. Bonanomi, M., 1220A
A. Bond, Michelle, 1161B
A. Bongaarts, R., 295C
A. Bonneau, Benjamin, 949C*
A. Bonsall, Michael, 485A
A. Bosi, J. R., 1099C *
A. Booth, L., 91 *
A. Booth, V., 744B
A. Bordet, G., 355C
A. Borgeaud, C., 934B
A. Borinskaya, S., 412C
A. Bornhorst, J., 870B, 871C
A. Bosari, S. Saberi, 1028A
A. Bose, N., 1159C
A. Bossinger, O., 250C
A. Boudreau, Jeffrey, 1020B
A. Bouffard, Jeff, 367C
A. Boulin, T., 675B
A. Bourdon, L., 247C
A. Bowen, J. E., 262C *
A. Bowlerman, B., 17, 263A
A. Bowlerman, Bruce, 402B
A. Bowles, A., 290A
A. Bowman, E., 1023B
A. Boxem, Mike, 232C, 233A
A. Boyden, Edward, 245A, 301C, 837B
A. Boyle, D., 1183C
A. Boyson, S., 561B
A. Bracht, S., 414B
A. Brady, S. C., 68
A. Braeckman, B., 1055A
A. Braeckman, B. P., 1036C
A. Braendle, C., 472C, 476A
A. Brandão, A., 1123C
A. Brandt, J., 231B
A. Brandt, James, 266A *
A. Brandt, J. P., 1231C
A. Brar, H., 891B
A. Breen, P. C., 31
A. Bremer, M., 974A
A. Brennan, Rachel, 310C
A. Breton, Elizabeth, 282B *
A. Bretonneau, C., 865C
A. Bringmann, H., 985C
A. Brinkley, David, 25
A. Brissette, B., 840B *
A. Brittin, C., 72 *
A. Brock, Trisha, 621B
A. Broitman-Maduro, Gina, 1149B
A. Bromley, S., 1078C
A. Brook, S., 1018C
A. Brooke, Paul S., 279B, 1131B
A. Brosse, L., 903B *
A. Brosnan, Christopher, 649C *
A. Brown, A. E. X., 770A, 818A, 821A
A. Brown, C., 352C
A. Brown, George, 322C
A. Brown, Jordan, 85
A. Brown, K., 290A
A. Brown, K. C., 576B
A. Brown, T., 1177C *
A. Bruce, James, 1015C
A. Brüggemann, C., 10
A. Brugman, Katherine I., 586C
A. Brugman, K. I., 194, 739C *
A. Brunet, A., 91
A. Bryant, A., 1182B
A. B. Smit, Ryan, 382C
A. Bubnis, Gregory, 304C *
A. Buchmann, Gabriele, 532C
A. Buck, A. H., 645B
A. Buckley, M., 953A
A. Bukaczek, Mateusz, 591B,
A. Budai, Z., 203A
A. Buechler, Matthew, 413A,
SPEAKER AND AUTHOR INDEX

C

Cadena del Castillo, C., 156*
Caenorhabditis Genomes
Project consortium, 67
Caenorhabditis
Intervention Testing
Program, 1069C
Cahoon, C., 261B*
Cain, S., 508C*
Calahorro, F., 704A*, 932A*
Calarco, J. A., 571C
Calarco, John, 145, 583C
Caldwell, G. A., 896A, 897B, 898C, 899A
Caldwell, K. A., 896A, 897B, 898C, 899A
Cale, A., 358C*
Calhoun, W. A., 844C*
Calixto, A., 90, 175, 567B, 921B, 1201C
Calixto, Andrea, 884A
Calvi, I., 229C*
Camacho, J., 538C
Camacho, Jessica, 531B
Camara, H., 636B*
Campos-Lopez, M., 1064A
Campos-Martinez, G. A., 393B*
Caneo, M., 175
Cantarelli, M., 853C
Cao, D., 635A*
Cao, Mengyi, 712C*, 838C
Cao, Wei, 362A*
Cardenas, J. E., 759B
Cardoza, S., 693B*
Carelli, F. N., 69*
Carpenter, Brandon, 333B
Carpenter, Brandon S., 1228C
Carrasco, K., 515A
Carretero, M., 1134B
Carstensen, Heather, 802C, 927B
Carstensen, H. R., 817C, 1120C*
Carter, J., 555B*
Casanueva, O., 1136A
Casanueva, Olivia, 93
Cascino, K., 580C
Castaneda, Perla, 428A
Castaneda, P. G., 423B*
Castleletto, M., 593A*
Castiglioni, V. G., 232C*
Castrejon, Jessica, 802C, 927B
Cattin, J., 498B
Cattin-Ortol, Jerome, 321B
Caudy, A., 603B
Caudy, A. A., 1143B
Cecchetelli, A., 423B
Cecchetelli, Alyssa D., 428A
Cecerere, G., 83, 551A, 644A, 648B, 650A
Cecere, Zachary, 107
CenGEN Consortium, 8
CenGEN Consortium, 44
Cenik, Can, 359A
Cerdà, V., 807B*
Cerón, J., 551A, 612B
Cerrato, C., 69
Cerrato, Chiara, 142
Cevik, Sebiha, 316C
Chahal, G., 306B
Chai, C., 911C*, 1119B*
Chai, Cynthia, 838C
Chalasani, S., 36
Chalasani, S. H., 970C
Chalasani, Sreekanth, 107*
Chalfie, M., 104
Chalfie, Martin, 169, 738B
Chan, Fountane, 84
Chan, J., 47*, 1078C
Chan, J. Y., 432B*
Chan, L., 178
Chan, Lu-Yan, 404A
Chan, W. M., 87
Chandra, R., 95*
Chandrasekar, Sinduja, 55
Chang, C., 458A*, 463C, 776A, 781C, 859C
Chang, E., 10, 982C
Chang, H., 190
Chang, I., 216B
Chang, J., 1090C
Chang, Maggie M., 964C
Chang*, M. M., 967C*
Chang, Yu-Hao, 993B*
Chapman, Dail, 245A*
Charest, J., 197
Charlesworth, A., 80
Charlesworth, Amanda, 653A*
Charlesworth, S., 777C*
Charneco, M., 762B
C. Harvey, Simon, 1035B
Chaturvedi, Amares, 1038B
Chaudhary, S., 842A*
CHAUHAN, P. S., 1107B
Chauve, Laetitia, 93*
Chavez, I., 1177C
Chawla, D., 221A
Checchi, P., 291B
Checchi, Paula, 558B
Cheesman, H. K., 1178A,
Cheh, C., 765B
Chen, B., 299A
Chen, C., 685C*, 1179B,
Chen, Chi, 1188B
Chen, Chun-Hao, 838C
Chen, Di, 997C*
Chen, E., 1069C, 1080B

................................... 763C
Buelow, H., 824A
Buelow, Hanes, 966B
Bui, A., 1168C
Bui, T., 613C
Bülow, H., 253C
Bülow, H. E, 45
Bulut, S., 330B
Bulut, R., 343C*
Bulut, Selman, 329A
Busack, I., 985C*
Burton, N. O., 535C
Burton, N., 1186C
Burrows, L.L, 1192C
Burkhardt, R., 131
Burkewitz, K., 148*
Bumbarger, Daniel, 802C
Bumbarger, Dan, 927B
Bumbarger, Daniel, 802C
Burton, N. O., 535C
Busack, I., 985C*
Busch, K. E., 714B, 996B
Byrne, A., 912B
Byrne, A. B., 911A
Byrne, Alexandra B., 905A
Corsi, A., 357B
Corso, J., 717B
Corti, S., 858B
Cortopassi, W., 1087C
Coskun, P., 553C*
Cortopassi, W., 1087C
................................. 982C
Couillault, C., 338A
Cradeur, Michael, 467A
Cram, E., 30, 241C
Cram, E. J., 423B
Cram, Erin, 240B, 367C
Cram, Erin J., 428A
Cramer, E., 227A
Crittenden, S., 253C
Crew, Jeannette, 746A
Crawford, Z., 843B*
Crawford, Jeremy P., 435B
Cravo, Janine, 340C*
Crittenden, S. L., 368A*
Crook, M., 1142A*
Crombie, Tim, 475C
Crombie, T. A., 68*
Crooks, Peter, 920A
Csankovszki, G., 552B
Crowder, M. C., 1104B
Crowder, Mike, 1015C*
Csankovszki, G., 552B
Cubillas, C., 575A*, 1141C
Cuciarone, Kori, 1209B
Cuenas-Condori, A. A., 193*, 819B, 820C*
Cui, Mengqiao, 772C*
Cuko, L., 358C
Curran, S., 1068B, 1094A,, 1158B
Curran, Sean, 1140B
Curran, S. P., 655C, 1096C
Currey, H., 868C, 876B
Currie, M., 853C
Curts, Brian, 1145A
Cutillias, Pedro, 265C
Cutler, Asher, 496C
Dahlberg, C., 938A
Dahlberg, L., 325C
Dai, Chuang-Yang, 100
Dai, H., 79
Dai, S., 667C*
Dai, S. Y., 658C
Dalton, H., 1068B
Daniele, T., 197
Danlasky, B. M., 269A*
Danno, A., 442C
Dao, P., 818A
Dar, A. K., 1150C
Dargere, D., 565C
Darragh, A., 492B*
Darzacq, X., 139
Das, Moumuh, 600B*
Daspung, Madhumanti,, 1176B*
Daskalaki, I., 1039C,, 1041B*, 1135C
Daugherty, M. D., 147
Daul, A., 352C
Daul, A. L., 11*
David, H. S., 149
Davie, T., 1143B, 1173B*
Davies, A. G., 342B
Davis, C., 1030C
Davis, K. C., 752A*
Davis, L., 113, 839A
Davis, M., 552B
Davis, Melissa, 417B
Davis, M. Wayne, 116, 614A
Davis, Paul, 503A, 587A*
Dawes, A., 226C
Day, M., 260A
Day, N., 23, 375B
De Abreu, C., 1166A
Deane, C. S., 1185B, 1200B
De Barros Oliveira, R.,, 867B*
de Bon, M., 111
Degrémonts, J., 381B
de Groot, Hanna, 340C
de Guzman, A. C. V.,, 730C*, 803A
de Haan, Bart, 168
De Haes, M., 1055A
Dejima, Katsufumi, 625C*
Delaney, Kamila, 516B
De La Torre, M., 1166A
De La Torre Pinedo, G.,, 294B*
Del Borrello, S., 603B, 294B*
De Abreu, C.,, 1166A
Delgad, Scarlett E., 884A*
Dello Stritto, M., 251A
Dembek, Joanna, 490C
deMello, Andrew, 365A
Deng, J., 777B
Denham, J. E., 735B*
de Quervain, D., 713A
Derhart, S., 520C
Dernburg, Abby, 620A
Dernburg, A. F., 69, 283C
De Rosa, Maria Jose, 97
Derry, W. B., 126, 436C,
, 446A, 1042C
Desai, A., 180, 222B
Desai, Arshad, 3
Deshe, N., 94
de Souza, Evandro, 638B
Desse, V., 800A*
de Stasio, Elizabeth, 188
Detienne, G., 1055A
Devanapally, S., 524A
de Verteuil Yeboah, P.
Alex, 445C*
Devigne, Alcine, 274C*
Dey, S., 891B, 891B
Dey, Shirshendu, 880C
Dhakal, P., 928C*
Dharia, S., 380A
Dhillon, H. S., 937C
Dhim, V., 717B
Dhind, I., 1036C
Diaz-Balzac, C., 784C
Diaz-Balzac, C. A., 811C
Di Bernardino, M., 1192C*
Dickey, A.M, 907C
Dickman, M., 525B
Dider, C., 83, 644A, 650A
Dierich, J., 657B
Diehl, C., 1064A
Diehl, Calista, 1060C*
Dierking, K., 59, 65
Dierking, Katja, 1197B
Dietrich, L., 104
Dietrich, N., 158
DiFranco, Matthew, 304C
Dils, C. M., 477B*
Dillin, L., 76, 136
Dillman, A., 501B, 674A
Dillman, Adler, 455A
Dima, R., 248A
Dimov, Ivan, 1149B
Ding, Qitao, 141
Ding, S. S., 770A*
Ding, Wei, 155
Ding, Yuehe, 543B*, 667C
Dingtli, F.R., 83, 644A
Dinyari, A., 536A
Dion, P., 867B
Diop, M., 524A
DiPanni, J., 227A
DiPanni, Joseph, 225B
Di Schiavi, E., 858B*
Diwan, A., 575A
Dixit, S., 308A
Doell, C., 589C
Doenier, Emma, 391C
Doering, K., 991C*, 1012C
D}
SPEAKER AND AUTHOR INDEX

Félix, Marie-Anne, 1222C
Fellows, N., 227A
Feltin, T., 822B
Feng, W., 818A
Feng, L., 162, 1150C
Felton, T., 822B
Fennell, Francesca, ... 402B
Fernandes Pòvoa, E., ... 117
Fergin, Aleksandra, 401A*
Feresten, A. H.,..... 782A*
Fernandez, A. G., 387B*
Fenyves, B., 713A
Fernandez, R. W.,
.......................... 42*, 942B
............................... 687B*
.............................. 1016A*
Fernandez Abascal, J.,
Fernandez Abascal,
Jesus, 749A
Ferreira, T.,............... 776A
Fernando, L., 589C
Ferreira, C., 933B
Ferraro, T., 2
Maria,....................... 572A
Ferreira dos Santos,
Fernando, L. M.,280C*
Fiedler, Franziska, 24
Figueroa, Z., 901C
Filina, O., 1043A*
Filipowicz, Adam, ... 747B*
Filippopoulou, K., ... 338A*
Fink, Emma, 25
Finkelstein, Sarah, 334C*
Fire, Andrew, 359A
Fire, Andrew Z., 12
Fisher, A. L., 1075C
Fitch, D.,............... 171, 491A
Fitch, D. H. A.,5, 411B
Fitzgerald, M., 893A
Fiumelli, H., 1034A
Flamand, M., 81
Flamand, M. N., 662A
Flanagan, Kelly, 1172A
Flatt, K. M., 356A*
Flatt, Kristen, 1209B
Flavel, Matthew, .. 1083B*
Filbotte, S., 332A, 589C
Filbotte, Stephanie, .. 1015C
Flores, Kevin, 887A
Florman, Jeremy, 97
Flynn, Elizabeth, ...1024C*
Fortes, E., 977A*
Foster, K. J., 1198C*
Foster, O., 313C
Fouad, A.,..........699B, 705B
Fouad, A. D., 1164B*,
.......................... 1166A*
Foulger, A., 1069C, 1080B,
............................... 1089B
Foulger, Anna, 1062B
Fox, Bennett, 152
Fradin, H., 491A
Frakes, A., 76*
Francis, MM, 968A
Francis, M. M., 812A
Francisco, M., 559C
Frang, Alison, 89
Frankino, P. A., 136
Franklin, L., 1133A*
Frapporti, Andrea, 533A*
Fraser, A., 603B
Fraser, A. G., 482A, 1143B,
............................... 1173B
Freeberg, M., 358C
Freire-Pritchett, P., ... 111
Frézal, L., 476A
Frézal, Lise, 456B
Froehlich, Jonathan, .. 144*
Frokjaer-Jensen, C., ... 521A
Frolows, Natalya, 517C*
Fry, A., 19*, 1023B
Fuda, N. J., 139*
Fuentes, A., 175
Fuji, S., 678B
Fujiita, T., 1021C*
Fujiwara, M., 945B*
Fujiwara, Y., 106
Fukamizu, Akiyoshi, .. 513B
Fukushige, Tetsu, 1161B
Fukuyama, Masamitsu,
............................... 1016A*
Full Immersion
Research Experience,
Students of BIOL447/
FIRE:, 716A
Funayama, T., 834B
Fuquha, Heath, 377A
Furlan, G., 534B*
Gabaldon, C, 567B*
Gaffney, C., 1170B
Gaffney, C. J., 1200B
Gagné, O., 371A
Gagnon, S., 666B*
Galagali, H., ... 358C, 657B*
Galiano, M., 72, 805C*
Gall, J. G., 14
Gallante, C., 605A
GALLY, C., 354B
Gally, C., 2
Galy, Vincent, 279B
Gandi, F. A., 1058A
Gandi, F. A. R., 1059B*
Gang, S., 1182B
Ganjir, R., 938A
Ganne, Akshatha, 920A
Gao, S., 508C, 675B,
............................... 702B, 703C
Gao, Shangbang, 1163A,
.............................. 1165C
Garcia, B., 1127A
Garcia, L., 831B, 1132C
Garcia, L. R., 719A
Garcia, L. Rene,118, 861B*
Garcia, S., 1123C
Garcia, V., 1201C
Garcia-Angulo, V., 175
Garner, Davis, 588B*
Garrett, T., 1080B
Garriga, G., 205C, 828B*
Garrigues, J. M., 147*
Garrison, J., 1101B
Garrison, J. L., 1103A
Gatlin, Rachel, 872A
Gaudenzi, C., 449A
Gauthier, K., 452A*, 666B
Gavriliidis, G., 939B
Gazzola, David, 1172A
Geens, E., 424C, 1036C
Geier, Ben Geier, 391C
Geisler, F., 250C*
Gelbart, I. A., 662A
Geldenhuys, W. J., 1099C
Gems, David, 38
Gerchman, Yoram, 60
Gerhold, Abigail, 220C*
Gerkin, R. C., 853C
Gershkovich, M., 727C
Gertz, Jason, 572A
Ghanta, K. S., 664C
Ghanta, K.S, 579B*
Gharat, V., 713A
Gharib, Shahla, 838C
Gerhold, Abigail, 48, 838C
Ghayoomie, V., 853C
Ghaz, A., 62, 1058A,
.............................. 1059B, 1152B
Ghazi, Arjumand, 1108C
Ghose, P., 127*
Ghosh Roy, A., 891B*
Ghosh Roy, Anindya, 880C
Gildea, H., 76
Gill, M. S., 163
Gill, R., 956A*
Gill, Rachael, 741B
Gill, S., 1168C
Gildeard, J., 1189C
Ginn, H., 200
Giordano, H., 853C
Girard, Chloe, 265C
Ginzberg, M., 1042C
Gingold, H., 200
Gingell, S., 853C
Gilleard, J., 1189C
Gill, Rachael, 741B
Gill, S., 1168C
Gitschlag, B., 57
Girgenrath, J. K., 664C*
Glauser, G., 469C
Gleason, R., 311A
Godbole, A. A., 1076A*
Gobel, Verena, 236A, 772C
Gobel, V., 184*
Gneid, H., 579B
Glover, Marissa, 15
Glendenning, L., 1064A
Glover, Marianna, 15
Gneid, H., 579B
Gobel, V., 184*
Gobel, Verena, 236A, 772C
Godbole, A. A., 1076A*
Godfrey, M., 535C
Goelzer, Janet, 791A
Goettemoeller, A., 765B
Goetz, Elizabeth, 461A
Goldberg, H., 1224B
Goldberg, Hailey V., 1227B*
Goldberg, M., 250C
Golden, A., 257A, 1202A
Golden, Andrew, 188
Golden, Andy, 367C,
............... 507B, 1128B, 1206B
Golden, N., 1013A*
Goldstein, B., 249B
Goldstein, Bob, 119
Goldstein, C., 394C
Gomez-Cavazos, J.S., 222B
Goncalves, Jimmy, ... 861B
Goncharov, Alexandr, 346C
Gönczy, P., 213B, 331C
Gonopolskiy, A., 799C
Gonzalez Rangel, A. A., 932A*
Goodman, M., 301C, 302A
Goodman, Miriam, 245A
Gopal, S., 253C*
Gopal, Sandeep, 362A
Gordon, M. T., 1150C

Gordon, R., 853C
Gordon, S., 258B*
Gordon, Sarah, 38
Gordus, Andrew, 711B
Gosdphan, A., 150, 349C,
............... 522B, 546B*
Goswamy, D., 62, 1199A*
Gotta, M., 214C, 229C
Gottschalk, A., 845A*
Gottschalk, Alexander, 114,
............... 973C*
Goudeau, Jérôme, 298C*
Gould, A., 442C
Goupi, Eugénie, 210B
Gourgou, E., 693B, 717B,
............... 744B*, 765B*
Gouette, Caroline, 25*, 397C
Gouveia, G., 1127A
Goya, M. Eugenia, 133*
Graber, J., 259C
Graham, B. L., 1206B*
Granger, Richard, 619C*
Grant, B., 7, 320A, 324B,
......... 398A, 432B, 437A, 438B
Greenwald, I., 117C,
............... 617A, 850C, 1098B
Grant, Barth, 310C, 916C
Grant, B. D., 319C, 811C
Grant, J., 688C
Gray, C. F., 390B
Green, Emily, 987B
Green, Rebecca, 3*
Greenwald, I., 120, 335A,
............... 398A, 432B, 437A, 438B
Greenwald, Iva, 334C
Gregory, E., 238C
Greiner, A., 113C*
Grell, S., 839A
Griffin, Sue, 920A
Grigorian, Gregory, 586C
Grill, B., 163
Grill, S., 405B
Grimbert, S., 410A*
Grimme, A., 630B*
Gritsenko, V., 950A
Grooms, N., 893A*
Gross, K., 670C
Gross, V., 727C*
Groß, Victoria, 24
Grosshans, H., 124
Großhans, H., 609B
Groth, A. C., 581A*
Groth, Amy Groth, 391C
Grove, C., 508C
Grubbs, Jeremy, 746A, 748C
Grubbs, Jeremy J., 132
Grubbs, J. J., 755A*
Gruss, M., 357B*
Gu, A., 317A
Gu, Amanda, 188
Gu, W., 79*, 646C
Guan, Guoye, 404A*
Guasp, R., 7, 608A, 623A,
............... 850C, 910C, 1098B
Guasp, Ryan, 293A*
Gudibanda, P., 131
Gudibanda, Pooja, 38
GUHA, SANJIB, 833A*
Guilfo, Katherine, 1024C
Guisbert, E., 1010A, 1013A
Guisnet, A., 841C*
Guitard, Ericka, 883C
Gulez, B., 809A*
Gulyas, L., 1072C*
Gumienny, Tina L., 122
Gumienny, T. L., 447B,
............... 1155B, 1214A
Gunasekera, S., 411B
Gunsalus, K., 491A, 1218B
Gunsalus, K. C., 387B
Guo, J., 1224B, 1225C*
Guo, M., 399B, 799C, 808C,
............... 1069C, 1080B
Guo, Max, 1062B
Guo, S., 1069C, 1080B
Guo, Suzhen, 1062B
Guo, Xiaoyan, 861B
Guo, Y., 686A, 734A, 998A,
............... 1126C
Guo, Yiqing, 450B
Gupta, A., 1174C
Gupta, Anjali, 1175A*,
............... 1176B
Gupta, Bhagwati, 425A
Gupta, S., 563A, 1170B
Gurkar, A. U., 163
Gurnett, C., 664C
Gervais, I., 133B
g */h
<table>
<thead>
<tr>
<th>Name</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Habacher, C.</td>
<td>1126C</td>
</tr>
<tr>
<td>Habermeyer, B.</td>
<td>98</td>
</tr>
<tr>
<td>Hahn, Daniel</td>
<td>494A</td>
</tr>
<tr>
<td>Hahn, Y.</td>
<td>345B</td>
</tr>
<tr>
<td>Hahnel, S. R.</td>
<td>68</td>
</tr>
<tr>
<td>HAJDUSKOVA, M.</td>
<td>354B</td>
</tr>
<tr>
<td>Haji Adineh, S.</td>
<td>306B</td>
</tr>
<tr>
<td>Hajnal, Alex.</td>
<td>365A, 366B</td>
</tr>
<tr>
<td>Hajnal, Prof. Alex.</td>
<td>212A</td>
</tr>
<tr>
<td>Hale, Valerie</td>
<td>25</td>
</tr>
<tr>
<td>Haley, R.</td>
<td>207B</td>
</tr>
<tr>
<td>Hall, A.</td>
<td>606B</td>
</tr>
<tr>
<td>Hall, A. N.</td>
<td>1085A*</td>
</tr>
<tr>
<td>Hall, D.</td>
<td>850C, 1069C</td>
</tr>
<tr>
<td>Hall, D. H.</td>
<td>129</td>
</tr>
<tr>
<td>Hall, David</td>
<td>1062B</td>
</tr>
<tr>
<td>Hall, David H.</td>
<td>169</td>
</tr>
<tr>
<td>Hall, D. H.</td>
<td>129</td>
</tr>
<tr>
<td>Hall, Rhodes</td>
<td>987B</td>
</tr>
<tr>
<td>Hall, Richard Nelson</td>
<td>359A</td>
</tr>
<tr>
<td>Hall, S.</td>
<td>39, 540B, 792B</td>
</tr>
<tr>
<td>Hallen, E.</td>
<td>593A, 1177C</td>
</tr>
<tr>
<td>Haller, M.</td>
<td>98</td>
</tr>
<tr>
<td>Ham, S.</td>
<td>1032B*.</td>
</tr>
<tr>
<td>Hammarlund, M.</td>
<td>1021C</td>
</tr>
<tr>
<td>Hammarlund, Marc.</td>
<td>882B</td>
</tr>
<tr>
<td>Hammel, C. M.</td>
<td>146</td>
</tr>
<tr>
<td>Hammerquist, A. M.</td>
<td>655C*</td>
</tr>
<tr>
<td>Han, H.</td>
<td>983A</td>
</tr>
<tr>
<td>Han, J.</td>
<td>162</td>
</tr>
<tr>
<td>Han, M.</td>
<td>545A</td>
</tr>
<tr>
<td>Han, S. H.</td>
<td>103B*</td>
</tr>
<tr>
<td>Han, S. K.</td>
<td>1031A</td>
</tr>
<tr>
<td>Han, X.</td>
<td>378B*</td>
</tr>
<tr>
<td>Hanafusa, H.</td>
<td>866A, 874C</td>
</tr>
<tr>
<td>Hanchard, N.</td>
<td>597B</td>
</tr>
<tr>
<td>Handa, S.</td>
<td>313C</td>
</tr>
<tr>
<td>Handley, A.</td>
<td>160*</td>
</tr>
<tr>
<td>Hanel, S. R.</td>
<td>478C</td>
</tr>
<tr>
<td>Hang, X.</td>
<td>153</td>
</tr>
<tr>
<td>Hanna, M.</td>
<td>829C*</td>
</tr>
<tr>
<td>Hanna-Rose, W.</td>
<td>762B</td>
</tr>
<tr>
<td>Hannich, J. T.</td>
<td>156</td>
</tr>
<tr>
<td>Hanover, John</td>
<td>1161B</td>
</tr>
<tr>
<td>Hansen, D.</td>
<td>374A, 376C</td>
</tr>
<tr>
<td>Hansen, Dave.</td>
<td>382C</td>
</tr>
<tr>
<td>Hansen, M.</td>
<td>36, 352C*</td>
</tr>
<tr>
<td>Hansen, Malene</td>
<td>986A</td>
</tr>
<tr>
<td>Hanson, E.</td>
<td>525B</td>
</tr>
<tr>
<td>Hanson, L. K.</td>
<td>1214A</td>
</tr>
<tr>
<td>Hao, H.</td>
<td>238C</td>
</tr>
<tr>
<td>Hao, Jiang</td>
<td>1165C</td>
</tr>
<tr>
<td>Harada, K.</td>
<td>49</td>
</tr>
<tr>
<td>Harbin, J.</td>
<td>422A*</td>
</tr>
<tr>
<td>Hardaway, J. A.</td>
<td>710A</td>
</tr>
<tr>
<td>Hardege, I.</td>
<td>43*, 954B</td>
</tr>
<tr>
<td>Hardin, Jeff.</td>
<td>467A</td>
</tr>
<tr>
<td>Harinath, G.</td>
<td>328C, 1007A</td>
</tr>
<tr>
<td>Harinath, Girish.</td>
<td>293A, 1062B</td>
</tr>
<tr>
<td>Harju, A.</td>
<td>1123C</td>
</tr>
<tr>
<td>Harne, A.</td>
<td>216B</td>
</tr>
<tr>
<td>Harney, Dylan.</td>
<td>532C</td>
</tr>
<tr>
<td>Harrell, K.</td>
<td>260A*</td>
</tr>
<tr>
<td>Harris, M. B.</td>
<td>1168C*</td>
</tr>
<tr>
<td>Harris, Michael B.</td>
<td>1169A*</td>
</tr>
<tr>
<td>Harris, Nathan.</td>
<td>679C*</td>
</tr>
<tr>
<td>Harris, T.</td>
<td>508C</td>
</tr>
<tr>
<td>Harrison, J.</td>
<td>222B</td>
</tr>
<tr>
<td>Hart, A. C.</td>
<td>734A, 908A</td>
</tr>
<tr>
<td>Hart, Anne.</td>
<td>506A</td>
</tr>
<tr>
<td>Hart, M. P.</td>
<td>951B*</td>
</tr>
<tr>
<td>Harterink, Martin.</td>
<td>168*</td>
</tr>
<tr>
<td>Hartman, J.</td>
<td>1067A</td>
</tr>
<tr>
<td>Hartman, J. H.</td>
<td>1070A*</td>
</tr>
<tr>
<td>Hartman, S.</td>
<td>1130C</td>
</tr>
<tr>
<td>Haruta, N.</td>
<td>474B</td>
</tr>
<tr>
<td>Harvey, A.</td>
<td>263A*</td>
</tr>
<tr>
<td>Harvey, B.</td>
<td>399B</td>
</tr>
<tr>
<td>Harvey, L-M.</td>
<td>660B*</td>
</tr>
<tr>
<td>Hasan, R.</td>
<td>816B</td>
</tr>
<tr>
<td>Hasani, R. M.</td>
<td>853C</td>
</tr>
<tr>
<td>Hashimoto, K.</td>
<td>52, 109</td>
</tr>
<tr>
<td>Haskell, D.</td>
<td>663B*</td>
</tr>
<tr>
<td>Haspel, G.</td>
<td>301C</td>
</tr>
<tr>
<td>Haspel, Gal.</td>
<td>837B</td>
</tr>
<tr>
<td>Hassell, D.</td>
<td>325C</td>
</tr>
<tr>
<td>Hastings, Janna.</td>
<td>93</td>
</tr>
<tr>
<td>Hatakeyama, A.</td>
<td>415C*</td>
</tr>
<tr>
<td>Hatters, Danny.</td>
<td>1029B</td>
</tr>
<tr>
<td>Hattwell, J.</td>
<td>1136A</td>
</tr>
<tr>
<td>Haupt, K. A.</td>
<td>369B*</td>
</tr>
<tr>
<td>Haversat, J. M.</td>
<td>14</td>
</tr>
<tr>
<td>Hawk, J.</td>
<td>694C</td>
</tr>
<tr>
<td>Hawkins, N.</td>
<td>453B</td>
</tr>
<tr>
<td>Hayden, J.</td>
<td>1166A</td>
</tr>
<tr>
<td>Hayes, Lisa J.</td>
<td>1228C</td>
</tr>
<tr>
<td>Haynes, C.</td>
<td>1068B</td>
</tr>
<tr>
<td>He, F.</td>
<td>686A</td>
</tr>
<tr>
<td>He, Liu</td>
<td>168</td>
</tr>
<tr>
<td>He, S.</td>
<td>193</td>
</tr>
<tr>
<td>He, Z.</td>
<td>429B</td>
</tr>
<tr>
<td>He, Zhengying.</td>
<td>96</td>
</tr>
<tr>
<td>Heath, W.</td>
<td>1008B</td>
</tr>
<tr>
<td>Heath, William.</td>
<td>1014B</td>
</tr>
<tr>
<td>Hebbar, S.</td>
<td>671A, 672B*</td>
</tr>
<tr>
<td>Hegarty, E.</td>
<td>303B, 846B</td>
</tr>
<tr>
<td>Heikkinen, Liisa.</td>
<td>500A</td>
</tr>
<tr>
<td>Heiman, M.</td>
<td>185</td>
</tr>
<tr>
<td>Heiman, Maxwell.</td>
<td>813B</td>
</tr>
<tr>
<td>Heintz, C.</td>
<td>1066C</td>
</tr>
<tr>
<td>Heinze, Svenia. D.</td>
<td>212A*</td>
</tr>
<tr>
<td>Held, J. P.</td>
<td>999B*</td>
</tr>
<tr>
<td>Helf, M.</td>
<td>1146B</td>
</tr>
<tr>
<td>Helf, Maximilian J.</td>
<td>152</td>
</tr>
<tr>
<td>Hemmingsson, O.</td>
<td>102</td>
</tr>
<tr>
<td>Hendel, Jeff.</td>
<td>3</td>
</tr>
<tr>
<td>Hendi, A.</td>
<td>172*</td>
</tr>
<tr>
<td>Hendricks, M.</td>
<td>841C</td>
</tr>
<tr>
<td>Hendricks, Michael.</td>
<td>51, 718C</td>
</tr>
<tr>
<td>Hepurker, A.</td>
<td>284A</td>
</tr>
<tr>
<td>Herit, F.</td>
<td>203A</td>
</tr>
<tr>
<td>Herman, M.</td>
<td>1190A</td>
</tr>
<tr>
<td>Hermann, G.</td>
<td>231B*, 313C*</td>
</tr>
<tr>
<td>Hernandez, L.</td>
<td>824A</td>
</tr>
<tr>
<td>Herrera, R. A.</td>
<td>5, 411B</td>
</tr>
<tr>
<td>Herrmann, Audrey.</td>
<td>210B*</td>
</tr>
<tr>
<td>Hershberger, K. A.</td>
<td>536A*</td>
</tr>
<tr>
<td>Herzog, J.</td>
<td>268C</td>
</tr>
<tr>
<td>Herzog, Margareta.</td>
<td>144</td>
</tr>
<tr>
<td>Hewitt, J. E.</td>
<td>1092B, 1167B</td>
</tr>
<tr>
<td>Hibshman, J.</td>
<td>1023B</td>
</tr>
<tr>
<td>Hibshman, J. D.</td>
<td>56, 514C</td>
</tr>
<tr>
<td>Hickey, B.</td>
<td>23</td>
</tr>
<tr>
<td>Higashitani, Atsushi.</td>
<td>486B</td>
</tr>
<tr>
<td>Higashitani, Nakho,</td>
<td>1111C*, 1196A</td>
</tr>
<tr>
<td>Higashiyama, T.</td>
<td>109</td>
</tr>
<tr>
<td>Higgins, Daniel.</td>
<td>506A</td>
</tr>
<tr>
<td>Highasitani, Atsushi.</td>
<td>801B</td>
</tr>
<tr>
<td>Hijugu-Sanabria, R.</td>
<td>136</td>
</tr>
<tr>
<td>Hill, M.</td>
<td>657B</td>
</tr>
<tr>
<td>Hill, T.</td>
<td>743A*</td>
</tr>
<tr>
<td>Hilliard, M. A.</td>
<td>176, 913C</td>
</tr>
<tr>
<td>Hincks, J. C.</td>
<td>876B*</td>
</tr>
<tr>
<td>Hingwing, K.</td>
<td>453B</td>
</tr>
<tr>
<td>Hinojosa Paiz, J.</td>
<td>541C*</td>
</tr>
<tr>
<td>Hiroki, S.</td>
<td>936B*</td>
</tr>
<tr>
<td>Hirose, Takashi.</td>
<td>125, 206A</td>
</tr>
<tr>
<td>Hirotta, Keiko.</td>
<td>513B*</td>
</tr>
<tr>
<td>Hisamoto, N.</td>
<td>866A, 874C</td>
</tr>
<tr>
<td>Hoshino, F.</td>
<td>875A</td>
</tr>
<tr>
<td>Ho, B.</td>
<td>904C</td>
</tr>
<tr>
<td>Ho, C. Y.</td>
<td>9</td>
</tr>
<tr>
<td>Ho, J.</td>
<td>237B</td>
</tr>
<tr>
<td>Ho, J. H.</td>
<td>205C</td>
</tr>
<tr>
<td>Ho, V.</td>
<td>178</td>
</tr>
<tr>
<td>Ho, X. Y.</td>
<td>176*</td>
</tr>
<tr>
<td>Hoang, H.</td>
<td>104*</td>
</tr>
<tr>
<td>Hobert, O.</td>
<td>8, 71, 115, 250, 1214A</td>
</tr>
</tbody>
</table>
SPEAKER AND AUTHOR INDEX

Keil*, W., 120
Keil, W., 146*
Keiper, B., 385C
Kelley, C., 30, 241C*
Kelley, Leanne, 639B*
Kelley, C., 30, 241C*
Kerr, Rex, 1077B*
Kenyon, Cynthia, 298C,
Keiper, B., 385C
Keil, W., 146*
Kenyon, C., 136
Kennedy, Matthew J., 114
Kempton, C., 555B
Kelly, W., 281A
Kelly, J., 1011B
Kervin, K., 1045C
Kennedy, David A., 489B*
Khan, Liakot A., 236A
Khaliullin, Renat, 3
Keung, Steven, 388C, 389A
Khan, M., 743A
Khanna, Amit, 1097A
Khayrulin, S., 853C
Khodosevich, K., 520C
Khodakova, A., 616C*
Khoss, Niklas, 955C
Kheiri, S., 967C
Kieninger, M. R., 215A*
Kilic, Atiye, 316C
Kikis, Elise, 987B*
Kikuchi, Taisei, 654B
Kilic, Aтиye, 316C
Kilner, A., 230A, 242A
Kim, A. C., 342B
Kim, B., 810B, 816B
Kim, C., 585B
Kim, Do-Young, 725A*
Kim, E., 1032B
Kim, E. J., 730C, 803A*
Kim, H., 186, 597B, 978B
Kim, Hee Chan, 830A
Kim, Heesoon, 543B
Kim, Hyun-Min, 528B*
Kim, Jinmahn, 725A, 925C*
Kim, Ji-Yuen, 993B
Kim, J. K., 651B
Kim, Jongrae, 925C
Kim, Jun, 599A, 1118A
Kim, K., 105, 680A, 681B, 722A, 726B
Kim, K. H., 846B
Kim, K.-T., 103
Kim, Kw., 454C
Kim, K. W., 918B*
Kim, Kyuhuyung, 725A, 732B, 925C
Kim, Kyung Won, 909B
Kim, N., 179, 249B
Kim, Nari, 1118A
Kim, S., 42, 585B, 734A,
1031A
Kim, Sungjung, 830A*
Kim, Wonjoo, 599A*, 1118A
Kim, Y., 1205A*
Kim, Young-in, 1109A
Kim, Young-Woo, 1052A
Kim, Yumi, 266A
Kimble, A., 242A
Kimble, J., 253C, 368A,
369B, 560A
Kimble, Judith, 391C
Kim Guisbert, K., 1010A,
1013A
Kimmel, Jacob, 1077B
Kimura, H., 1019A
Kin, K., 501B, 674A
Kin, K. Christina, 455A*
King, Kayla, 485A
King, S. D., 390B*
Kinser, H., 1082A, 1093C
Kiontke, K., 171, 491A
Kiontke, K. C., 5*, 411B*
Kirby, P., 1127A
Kirienko, N., 548A
Kirmes, Ina, 626A*
Kirshner, J., 651B*
Kirshner, J. A., 651B*
Kirst, C., 167
Kissoyan, K. A. B., 59*
Kitajewski, J., 123
Kitazewski, K., 706C
Kitazono, Tomohiro, 729B
Kitchen, Barry, 1083B
Klapa, M. I., 1135C
Klessig, D. F., 1154A
Kloock, Anke, 485A*, 1197B
Knauff, S., 697C
Knitter, C., 974A
Kobel, K., 368A
Koeferl, D., 32
Knott, J., 589C
Knott, J. A., 11
Knott, Julie, 604C
Knott, K. Emily, 500A
Knox, J., 1210C*
Knupp, David, 132
Ko, H.-T., 682C
Ko, Su Hyuk, 919C
Koblah, D., 1170B
Kochersberger, A., 795B*
Kocsisova, Z., 26*
Koelle, M. R., 42, 942B,
962A
Kofler, J., 895C
Koh, W. X., 9
Kohl, E., 448C
Kohlbrener, Tea, 365A*, 366B
Kohrman, A., 179
Kohtz, C., 352C
Koitz, F., 429B
Kolivas, D., 1213C
Kolnik, J., 953A
Kolotuev, I., 72
Kolotueva*, I., 403C
Kolundzic, E., 77, 349C
Komur, A. A., 998A*
Kondo, R., 109
Kong, Ji Na, 1047B*
Kono, K., 466C
Kono, Karina, 107
Kontarakis, K., 568C
Kontogiogos-Heintz, D., 98
Konznan, Daniel, 1161B*
Koo, Hyun-Sook, 427C
Kooistra, Robbeniel, 168
Koonce, N. L., 808C*
Kooorman, T., 918B
Kopchock, R., 981B*
Kopp, J. F., 870B
Kore, P., 903B
Kornfeld, K., 26, 384B,
488A, 575A, 1141C, 1162C
Kornfeld, Kerry, 1074B
Korswagen, H., 441B
Korswagen, H. C., 117*, 806A
Korswagen, R., 563A, 601C
Kosinski, K. E., 278A*
Katagama, K., 1138C
Katagama, Kasuena, 607C
Kotsch, T. J., 209A
Koushika, S., 307C
Koushika, S. P., 308A, 309B,
327B
Kourtsovolous, Georgios, 55
Kovacs, T., 203A
Kow, R. L., 873B, 877C*, 878A*
Kowalski, J. R., 953A*
Koyama, H., 701A
SPEAKER AND AUTHOR INDEX

Kraemer, B., 881A
Kraemer, B. C., 868C, 869A, 873B, 876B, 877C, 878A, 889C
Kraemer, Brian, 872A
Kratsios, P., ... 818A*, 821A
Krauchunas, A. R., ... 292C*
Kratsios, P., .. 818A*, 821A
Kraemer, Brian, 872A
Kremb, S., 1218B
Krieg, M., 768B*
Krempel, S. J., .. 126, 436C*
Krishnaswamy, S., 799C
Krishnamurthy, P.M, 579B
Kroetz, Mary B., 351B*
Kropp, Peter, 1128B*
Kruglyak, Leonid, 493C
Kubota, Yukihiko, 363B,
Kubiseski, Terrance, ... 584A
Kubo, S., 1021C
Kuhara, A., 106, 677A, 1111C
Kumar, A., 808C
Kume, Masahiko, ... 1016A
Kumsta, Caroline, 986A,
Kuzmanov, A., 262C
Kwon, Sujeong, 33
Kwon, S., 1129C*
Kurashina, M., 798B*
Kuroyanagi, H., 557A
Kuroyanagi, Hidehito, 562C*
Kursel, L.,................. 258B
Kurzchalia, TV, 161
Kuzmanov, A., 262C
Kwon, S., 1129C*
Kwon, Sujeong, 33
Kwong, Jennifer, 406C
Kyo, K., 49
Kyoda, K., 505C, 509A
Kyriakakis, Emmanuel, 1040A
Labarre, Audrey, 883C*, 886A, 887B, 888A, 889C
Labbé, J.-C.,............. 1215B
Labbé, Jean-Claude, 210B
Labochka, Marta K., 591B
Labochka-Derkowska, Marta, .. 594B*
LaBonty, Melissa, 757C, 758A*
Ladbury, J.,................. 244C
LaFayette, Cameron,757C*
Lai, C., 463C
Laird, Anne, 490C
Laird, N., 1082A*
Lakshminarayanan, Gitanjali, 128
Lalonde, Fernand, 1040A
Lamas, F., 594B*
Lamitina, S. T., 177
Lamitina, Todd, 994C
Lampersberger, L., 535C
LaMonon, Craig, 388C*, 389A*
Lan, Jianfeng 997C
Lan, Jiangfeng, 1097A
Lan, Lang, 763C
Landez, M., 1142A
Lang, Charles, 85
Langier Goncalves, I., 1004A*
Langridge, P., 432B
Landjui, A., 1063C, 1066C
Landjui, Anne, 1065B
Lant, B., 446A
Lao, R. X., 645B*
Lara-Gonzalez, P., 180*
Larance, M., 529C
Larance, Mark, 532C
Laranjeira, Ana Cristina, .. 366B*
Laranjeira, R.,........... 1007A*, 1018C, 1167B
Lardenois, A.,............. 2*
Larisch, S., 853C
Laskarev, Lagunas, L., 16*
Lattimer, C. S., 868C*
Lattmann, Evelyn, 401A
Lau, Hiu, 107
Lau, Tammy, 885B
Lautens, M., 603B
Lautens, M. J., 1143B
Lauziere, A.,............. 399B
Lavoy, S., 313C
Law, K., 369B
Lawry, S. Terese, 738B*
Lawry, T., 104
Lawson, H., 171*
Lázaro-Peña, M., 784C
Lazetic, V., 1071B*
Le, H., 1146B, 1160A
Le, Henry, 1145A*
Le, K., 27*
Le, N., 974A
Le, Tuan, 504B
Le, V. V., 759B
Ledebey, Ron, 60
LeBlanc, M., 1170B, 1219C*
LeBoeuf, Brigitte, 118*, 861B
Leclerc, Nicole, 915B
Lee, C., 190*, 368A, 1031A
Lee, C. W., 853C
Lee, D., 68, 476A*, 479A*, 1031A
Lee, Dongyeeop, 206A*
Lee, Eugene L. Q., ... 766C*
Lee, Garrett, 966B*
Lee, Heng-Chi, 85*
Lee, H. K., 721C*
Lee, Ho Ming Terence, 169
Lee, Hyunjung,.......... 1109A
Lee, J., 221A, 585B*, 694C*, 1115A
Lee, James Siho, 461A, 838C, 1117C
Lee, J. E., 803A
Lee, J. I., 721C
Lee, Jin I., 486B, 723B, 801B, 1196A
Lee, J. S., 194*
Lee, Jung Chan, 830A
Lee, Junho, 599A, 787C, 830A, 1118A
Lee, K., 47
<table>
<thead>
<tr>
<th>Name</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Montgomery, T. E.</td>
<td>576B</td>
</tr>
<tr>
<td>Montgomery, T.</td>
<td>86*</td>
</tr>
<tr>
<td>Montgomery, T. A.</td>
<td>576B</td>
</tr>
<tr>
<td>Montoya, Alex</td>
<td>265C</td>
</tr>
<tr>
<td>Montoye, E.</td>
<td>352C</td>
</tr>
<tr>
<td>Moody, J.</td>
<td>187*</td>
</tr>
<tr>
<td>Moody, Jasmine</td>
<td>406C</td>
</tr>
<tr>
<td>Moon, Chel</td>
<td>732B</td>
</tr>
<tr>
<td>Moon, Je-Hyun</td>
<td>846B</td>
</tr>
<tr>
<td>Moon, K.</td>
<td>801B*</td>
</tr>
<tr>
<td>Moore, A.</td>
<td>290A</td>
</tr>
<tr>
<td>Moore, B. T.</td>
<td>56</td>
</tr>
<tr>
<td>Moore, C.</td>
<td>537B*</td>
</tr>
<tr>
<td>Moore, R. S.</td>
<td>199*</td>
</tr>
<tr>
<td>Moorhead, Mackenzie</td>
<td>1062B</td>
</tr>
<tr>
<td>Moreira, P.</td>
<td>777B*</td>
</tr>
<tr>
<td>Moreno, Eduardo</td>
<td>802C</td>
</tr>
<tr>
<td>Moreno, T.</td>
<td>965A</td>
</tr>
<tr>
<td>Mor, Y.</td>
<td>200</td>
</tr>
<tr>
<td>Morales, J.</td>
<td>448C</td>
</tr>
<tr>
<td>Morao, A.</td>
<td>419A</td>
</tr>
<tr>
<td>Morash, M.</td>
<td>317A</td>
</tr>
<tr>
<td>Morash, Maggie</td>
<td>188</td>
</tr>
<tr>
<td>Moreira, P.</td>
<td>777B*</td>
</tr>
<tr>
<td>Moreo, Eduardo</td>
<td>927B</td>
</tr>
<tr>
<td>Mentz, Jose</td>
<td>1486B</td>
</tr>
<tr>
<td>Motilal, J.</td>
<td>954B*</td>
</tr>
<tr>
<td>Mori, Marcelo</td>
<td>636B</td>
</tr>
<tr>
<td>Mori, M. C.</td>
<td>151</td>
</tr>
<tr>
<td>Morrow, J.</td>
<td>732B</td>
</tr>
<tr>
<td>Mori, C.</td>
<td>762B*</td>
</tr>
<tr>
<td>Morris, C.</td>
<td>313C</td>
</tr>
<tr>
<td>Morshed, M.</td>
<td>1069C</td>
</tr>
<tr>
<td>Morshed, Mackenzie</td>
<td>1062B</td>
</tr>
<tr>
<td>Mortazavi, A.</td>
<td>407A, 549B</td>
</tr>
<tr>
<td>Mortazavi, Ali</td>
<td>556C, 598C</td>
</tr>
<tr>
<td>Mortazavi, E.</td>
<td>655A</td>
</tr>
<tr>
<td>Mortazavi, Evauna</td>
<td>669B</td>
</tr>
<tr>
<td>Morton, E.</td>
<td>606B*</td>
</tr>
<tr>
<td>Morton, E. A.</td>
<td>1085A</td>
</tr>
<tr>
<td>Morud, J.</td>
<td>43</td>
</tr>
<tr>
<td>Morud, Lekholm</td>
<td>954B*</td>
</tr>
<tr>
<td>Mosleye-Allredge, J.</td>
<td>50, 431A</td>
</tr>
<tr>
<td>Mosleye, M.</td>
<td>1093C*</td>
</tr>
<tr>
<td>Moss, E.</td>
<td>344A</td>
</tr>
<tr>
<td>Mote, Sefakor</td>
<td>121</td>
</tr>
<tr>
<td>Motegi, F.</td>
<td>228B*</td>
</tr>
<tr>
<td>Motilall, L.</td>
<td>995A</td>
</tr>
<tr>
<td>Motomura, H.</td>
<td>678B*</td>
</tr>
<tr>
<td>Mourao-Pacheco, Bruno</td>
<td>216B</td>
</tr>
<tr>
<td>Moustaid-Moussa, N.</td>
<td>322C</td>
</tr>
<tr>
<td>Mullins, T.</td>
<td>295C</td>
</tr>
<tr>
<td>Munasinghe, M.</td>
<td>1086B*</td>
</tr>
<tr>
<td>Munro, Ed.</td>
<td>85</td>
</tr>
<tr>
<td>Muqtadir, T.</td>
<td>972B</td>
</tr>
<tr>
<td>Murad, Rabi</td>
<td>595C</td>
</tr>
<tr>
<td>Murase, Kazunori</td>
<td>654B</td>
</tr>
<tr>
<td>Murayama, T.</td>
<td>192*, 700C</td>
</tr>
<tr>
<td>Murdoch, Sharlene</td>
<td>93</td>
</tr>
<tr>
<td>Murphy, Coleen</td>
<td>33, 92</td>
</tr>
<tr>
<td>Murphy, C. T.</td>
<td>199</td>
</tr>
<tr>
<td>Murphy, J.</td>
<td>575A</td>
</tr>
<tr>
<td>Murray, J.</td>
<td>66</td>
</tr>
<tr>
<td>Murray, John Isaac</td>
<td>347A</td>
</tr>
<tr>
<td>Murthy, K.</td>
<td>309B</td>
</tr>
<tr>
<td>Müthel, S.</td>
<td>511C</td>
</tr>
<tr>
<td>Myers, E. M.</td>
<td>1183C*</td>
</tr>
<tr>
<td>Narayan, Vivek</td>
<td>457C</td>
</tr>
<tr>
<td>Narbonne, P.</td>
<td>360B, 361C</td>
</tr>
<tr>
<td>Nareni, P.</td>
<td>371A*, 381B*</td>
</tr>
<tr>
<td>Naresh, N. U.</td>
<td>1068B</td>
</tr>
<tr>
<td>Natalello, A.</td>
<td>1220A</td>
</tr>
<tr>
<td>Natarajan, B.</td>
<td>1125B</td>
</tr>
<tr>
<td>Natori, T.</td>
<td>542A*</td>
</tr>
<tr>
<td>Nava, Stephanie</td>
<td>838C</td>
</tr>
<tr>
<td>Navarro, S.</td>
<td>995A</td>
</tr>
<tr>
<td>Navarro-González, R. E.</td>
<td>392A, 393B</td>
</tr>
<tr>
<td>Navlakha, S.</td>
<td>970C</td>
</tr>
<tr>
<td>Navodya, N.</td>
<td>42</td>
</tr>
<tr>
<td>Neagu, A.</td>
<td>124</td>
</tr>
<tr>
<td>Nehrbass, Stephen</td>
<td>435B</td>
</tr>
<tr>
<td>Nehrke, Keith</td>
<td>279B, 1131B</td>
</tr>
<tr>
<td>NEHRKE, KEITH</td>
<td>833A</td>
</tr>
<tr>
<td>Nejatbaksh, A.</td>
<td>115</td>
</tr>
<tr>
<td>Nelken, T.</td>
<td>950A</td>
</tr>
<tr>
<td>Nelms, B.</td>
<td>827A, 828B, 829C</td>
</tr>
<tr>
<td>Nelson, C.</td>
<td>652C*</td>
</tr>
<tr>
<td>Nelson, C. R.</td>
<td>283C</td>
</tr>
<tr>
<td>Nelson, Lydia</td>
<td>468B</td>
</tr>
<tr>
<td>Nelson, M. D.</td>
<td>129</td>
</tr>
<tr>
<td>Nett, Emily</td>
<td>286C</td>
</tr>
<tr>
<td>Neubauer, M.</td>
<td>9</td>
</tr>
<tr>
<td>Neumann, B.</td>
<td>856C, 860A, 9, 879B</td>
</tr>
<tr>
<td>Neunuebel, A.</td>
<td>573B</td>
</tr>
<tr>
<td>Newman, J.</td>
<td>1051C*</td>
</tr>
<tr>
<td>Ng, Chai-Chee</td>
<td>100</td>
</tr>
<tr>
<td>Ng, K.</td>
<td>178</td>
</tr>
<tr>
<td>Nguyen, Charlton</td>
<td>1187A</td>
</tr>
<tr>
<td>Nguyen, D. A.</td>
<td>82, 668A*</td>
</tr>
<tr>
<td>Nguyen, K.</td>
<td>7, 850C</td>
</tr>
<tr>
<td>Nguyen, Ken</td>
<td>188</td>
</tr>
<tr>
<td>Nguyen, Ken C. Q.</td>
<td>169</td>
</tr>
<tr>
<td>Nguyen, MN</td>
<td>1168C</td>
</tr>
<tr>
<td>Nguyen, Q.</td>
<td>901C</td>
</tr>
<tr>
<td>Nhan, J.</td>
<td>1068B*</td>
</tr>
<tr>
<td>Nichitean, A.</td>
<td>39</td>
</tr>
<tr>
<td>Nicholas, H.</td>
<td>788A</td>
</tr>
<tr>
<td>nichols, annika</td>
<td>971A</td>
</tr>
<tr>
<td>Nicolai, M. M.</td>
<td>870B, 871C*</td>
</tr>
<tr>
<td>Niedergang, F.</td>
<td>203A</td>
</tr>
<tr>
<td>Nikjoo, Tatiana</td>
<td>132</td>
</tr>
<tr>
<td>Nirmala, F. S.</td>
<td>1109A*</td>
</tr>
<tr>
<td>Nishikawa, M.</td>
<td>228B</td>
</tr>
<tr>
<td>Nishikori, K.</td>
<td>314A</td>
</tr>
<tr>
<td>Nishimura, MT</td>
<td>561B</td>
</tr>
<tr>
<td>Niswonger, Dana</td>
<td>1209B</td>
</tr>
<tr>
<td>Nitzan, A.</td>
<td>200</td>
</tr>
<tr>
<td>Niwa, S.</td>
<td>238C, 890A</td>
</tr>
<tr>
<td>Nizami, Z.</td>
<td>14</td>
</tr>
<tr>
<td>Nizzardo, M.</td>
<td>858B</td>
</tr>
<tr>
<td>Name</td>
<td>Page Numbers</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Noble, L.</td>
<td>196</td>
</tr>
<tr>
<td>Nollen, E. A. A.</td>
<td>28</td>
</tr>
<tr>
<td>Nomura, Naoto</td>
<td>513B</td>
</tr>
<tr>
<td>Nordquist, S.</td>
<td>...10*, 760C</td>
</tr>
<tr>
<td>Nørgaard, S.</td>
<td>789B</td>
</tr>
<tr>
<td>Nordquist, S.</td>
<td>773A*</td>
</tr>
<tr>
<td>Nomura, Naoto</td>
<td>513B</td>
</tr>
<tr>
<td>Nørgaard, S.</td>
<td>789B</td>
</tr>
<tr>
<td>Noris, A.</td>
<td>573B</td>
</tr>
<tr>
<td>Norris, A.</td>
<td>573B</td>
</tr>
<tr>
<td>Novatchkova, M.</td>
<td>251A</td>
</tr>
<tr>
<td>Norris, Adam</td>
<td>145*, 583C</td>
</tr>
<tr>
<td>Norgaard, S.</td>
<td>773A*</td>
</tr>
<tr>
<td>Nuin, P.</td>
<td>...508C</td>
</tr>
<tr>
<td>Nussbaum-Krammer, C.</td>
<td>901C</td>
</tr>
<tr>
<td>Nzessi, A.</td>
<td>320A</td>
</tr>
<tr>
<td>O</td>
<td></td>
</tr>
<tr>
<td>Obinata, H.</td>
<td>890A*</td>
</tr>
<tr>
<td>O'Brien, Barbara</td>
<td>815A</td>
</tr>
<tr>
<td>O'Brien, J.</td>
<td>1112A</td>
</tr>
<tr>
<td>O'Brien, S.</td>
<td>1138C</td>
</tr>
<tr>
<td>Ochoa, Stacy</td>
<td></td>
</tr>
<tr>
<td>Ochs, M.</td>
<td>790C*</td>
</tr>
<tr>
<td>O'Connell, Kevin</td>
<td>217C</td>
</tr>
<tr>
<td>O'Donnell, M.</td>
<td>1116B</td>
</tr>
<tr>
<td>Oegema, K.</td>
<td>180, 222B</td>
</tr>
<tr>
<td>Oegema, Karen</td>
<td></td>
</tr>
<tr>
<td>Ofenbauer, A.</td>
<td>150, 349C</td>
</tr>
<tr>
<td>Ofenbauer, Andreas</td>
<td>329A</td>
</tr>
<tr>
<td>Ogawa, H.</td>
<td>1021C</td>
</tr>
<tr>
<td>Ogawa, T.</td>
<td>1017B*</td>
</tr>
<tr>
<td>Ogawa, Takafuli</td>
<td>990B</td>
</tr>
<tr>
<td>Oh, Jun Young, 586C, 838C*</td>
<td></td>
</tr>
<tr>
<td>Oh, K.</td>
<td>186</td>
</tr>
<tr>
<td>O'Hagan, R.</td>
<td>317A</td>
</tr>
<tr>
<td>O'Hagan, Robert</td>
<td>188*, 326A</td>
</tr>
<tr>
<td>Ohashi-Kobayashi, A.</td>
<td>314A</td>
</tr>
<tr>
<td>Ohnishi, K.</td>
<td>106</td>
</tr>
<tr>
<td>Ohno, H.</td>
<td>72</td>
</tr>
<tr>
<td>Ohta, A.</td>
<td>106, 677A, 678B, 701A</td>
</tr>
<tr>
<td>Okada, H.</td>
<td>505C</td>
</tr>
<tr>
<td>Okafor, D.</td>
<td>187</td>
</tr>
<tr>
<td>Okafor, S.</td>
<td>937C</td>
</tr>
<tr>
<td>Okahata, M.</td>
<td>701A</td>
</tr>
<tr>
<td>O'Keefe, Calvin</td>
<td>50</td>
</tr>
<tr>
<td>O'Keefe, C.</td>
<td>437A*</td>
</tr>
<tr>
<td>Okumura, M.</td>
<td>610C*</td>
</tr>
<tr>
<td>O'Leary, K.</td>
<td>549B*</td>
</tr>
<tr>
<td>Oleson, B. J.</td>
<td>32, 1081C</td>
</tr>
<tr>
<td>Olivares, Erick</td>
<td>764A</td>
</tr>
<tr>
<td>Oliver, T.</td>
<td>284A</td>
</tr>
<tr>
<td>Olivero, C.</td>
<td>580C</td>
</tr>
<tr>
<td>Olmedo, M.</td>
<td>1043A</td>
</tr>
<tr>
<td>Olmedo, Maria</td>
<td>1137B</td>
</tr>
<tr>
<td>Olofsson, S.</td>
<td>953A</td>
</tr>
<tr>
<td>Olson, A.</td>
<td>42</td>
</tr>
<tr>
<td>Olson, B.</td>
<td>358C</td>
</tr>
<tr>
<td>Olson, Benjamin S.</td>
<td>418C</td>
</tr>
<tr>
<td>Olson, S. K.</td>
<td>294B, 1230B*</td>
</tr>
<tr>
<td>Omi, S.</td>
<td>545A</td>
</tr>
<tr>
<td>Onami, Mayumi</td>
<td>119</td>
</tr>
<tr>
<td>Onami, S.</td>
<td>415C, 505C</td>
</tr>
<tr>
<td>Onishi, Y.</td>
<td>706C*</td>
</tr>
<tr>
<td>Onken, B.</td>
<td>1061A, 1069C*</td>
</tr>
<tr>
<td>Onken, Brian</td>
<td>1062B</td>
</tr>
<tr>
<td>Oomura, S.</td>
<td>474B</td>
</tr>
<tr>
<td>Oosten, J.</td>
<td>895C</td>
</tr>
<tr>
<td>Oren-Suisse, M.</td>
<td>692A</td>
</tr>
<tr>
<td>O'Rourke, Sam</td>
<td>379C</td>
</tr>
<tr>
<td>Ortega, B.</td>
<td>306B</td>
</tr>
<tr>
<td>Ortiz, B.</td>
<td>1168C</td>
</tr>
<tr>
<td>Ortlund, E.</td>
<td>187</td>
</tr>
<tr>
<td>Osborne, O.</td>
<td>1134B</td>
</tr>
<tr>
<td>Osborne Nishimura, E.</td>
<td></td>
</tr>
<tr>
<td>Osterli, E.</td>
<td>375B*</td>
</tr>
<tr>
<td>Ostroff, Gary</td>
<td>1172A</td>
</tr>
<tr>
<td>Ota, M.</td>
<td>222B*</td>
</tr>
<tr>
<td>Ota, Natsumi</td>
<td>363B*</td>
</tr>
<tr>
<td>Otarigho, Benson</td>
<td>1148A*</td>
</tr>
<tr>
<td>Otopalik, A.</td>
<td>983A</td>
</tr>
<tr>
<td>Otuka, Y.</td>
<td>988C</td>
</tr>
<tr>
<td>Oudejans, Ellen</td>
<td>168</td>
</tr>
<tr>
<td>Ow, M.</td>
<td>39*, 792B*</td>
</tr>
<tr>
<td>Owoyemi, K.</td>
<td>750B</td>
</tr>
<tr>
<td>Owoyemi, T.</td>
<td>750B</td>
</tr>
<tr>
<td>Owewale, T.</td>
<td>20*</td>
</tr>
<tr>
<td>Oyibo, L.</td>
<td>903B</td>
</tr>
<tr>
<td>Özcan, I.</td>
<td>150, 329A*</td>
</tr>
<tr>
<td>Ozturk, A.</td>
<td>78</td>
</tr>
<tr>
<td>Ozugergin, I.</td>
<td>219B</td>
</tr>
<tr>
<td>Padula, A.</td>
<td>580C</td>
</tr>
<tr>
<td>Paetz, C.</td>
<td>469C</td>
</tr>
<tr>
<td>Page, A.</td>
<td>1218B</td>
</tr>
<tr>
<td>Pak, Young-Ki</td>
<td>427C</td>
</tr>
<tr>
<td>Pak, S.</td>
<td>597B</td>
</tr>
<tr>
<td>Palalay, J.</td>
<td>449A</td>
</tr>
<tr>
<td>Palanisamy, M.</td>
<td>196</td>
</tr>
<tr>
<td>Palazzo, O.</td>
<td>714B</td>
</tr>
<tr>
<td>Palikaras, Konstantinos</td>
<td></td>
</tr>
<tr>
<td>Palvanov, A.</td>
<td>853C</td>
</tr>
<tr>
<td>PAN, CHUN-LIANG</td>
<td>1005B</td>
</tr>
<tr>
<td>Pan, Chun-Liang</td>
<td>35, 683A, 1006C</td>
</tr>
<tr>
<td>Pan, Judy</td>
<td>1145A</td>
</tr>
<tr>
<td>Panda, O.</td>
<td>131, 479A</td>
</tr>
<tr>
<td>Pande, D.</td>
<td>891B</td>
</tr>
<tr>
<td>Pandey, R.</td>
<td>1002B, 1053B</td>
</tr>
<tr>
<td>PANDLEY, S.</td>
<td>1107B*</td>
</tr>
<tr>
<td>Pandey, T.</td>
<td>1053B*</td>
</tr>
<tr>
<td>Pang, S.</td>
<td>1158B</td>
</tr>
<tr>
<td>Pani, A. M.</td>
<td>249B</td>
</tr>
<tr>
<td>Pani, Ariel</td>
<td>119</td>
</tr>
<tr>
<td>Paninski, L.</td>
<td>115</td>
</tr>
<tr>
<td>Pankowski, Andrzei</td>
<td>516B</td>
</tr>
<tr>
<td>Panaic, M. E.</td>
<td>307A</td>
</tr>
<tr>
<td>Papanicolaou, Tony</td>
<td>1020B</td>
</tr>
<tr>
<td>Papadimitriou, A., 713A*</td>
<td></td>
</tr>
<tr>
<td>Parabo, A.</td>
<td>1168C</td>
</tr>
<tr>
<td>Parada, G.</td>
<td>535C</td>
</tr>
<tr>
<td>Parekh, M.</td>
<td>608A, 623A, 1098B</td>
</tr>
<tr>
<td>Parekh, Manan</td>
<td>916C</td>
</tr>
<tr>
<td>Park, B.</td>
<td>721C</td>
</tr>
<tr>
<td>Park, Cheon-Gyu</td>
<td>725A, 925C</td>
</tr>
<tr>
<td>Park, Dongjun</td>
<td>787C</td>
</tr>
<tr>
<td>Park, Eunchan</td>
<td>310C</td>
</tr>
<tr>
<td>Park, Eunchan</td>
<td>310C</td>
</tr>
<tr>
<td>Park, Hunjun</td>
<td>1131B</td>
</tr>
<tr>
<td>Park, H.</td>
<td>554A, 1119B, 1146B</td>
</tr>
<tr>
<td>Park, Hae-Eun</td>
<td>33</td>
</tr>
<tr>
<td>Park, Hae-Eun H.</td>
<td>1033C</td>
</tr>
<tr>
<td>Park, J.</td>
<td>972B</td>
</tr>
<tr>
<td>Park, Jun Young</td>
<td>427C*</td>
</tr>
<tr>
<td>Park, M.</td>
<td>756B</td>
</tr>
<tr>
<td>Park, S.</td>
<td>103*, 914A*</td>
</tr>
<tr>
<td>Park, Sangsoon</td>
<td>1033C</td>
</tr>
<tr>
<td>Park, Y.</td>
<td>105, 681B, 726B</td>
</tr>
<tr>
<td>Park, Youngjong</td>
<td>379C*</td>
</tr>
<tr>
<td>Parker, A.</td>
<td>867B</td>
</tr>
</tbody>
</table>
Shen, W., 1000C*, 1001A
Shen, Yongquan, 420B*, 421C, 450B
Sheng, Qicong, 477B
Sheoran, S., 820C
Sheoran, Seema, 50
Sherry, T., 160, 788A*
Shi, Cheng, 92*
Shi, H., 320A
Shih, Pei Yin, 712C
Shih, Pei-Yin, 461A*, 461A*
Shim, J., 1115A*
Shim, J. K., 1011B*
Shim, Y., 400C*, 1003C
Shimizu, T., 771B, 866A, 866A,
Shin, N., 255B
Shin, H., 336B, 369B
Shin, A., 136
Shin, H., 336B, 369B
Shin, N., 255B
Shin, Nara, 528B
Shindou, T., 192
Shinkai, Y., 864B
Shinya, Ryoji, 461A
Shiraishi, H., 314A
Shirayama, M., 78
Shorrock, M., 539A
Shroff, H., 821A
Shroff, H., 399B, 799C
Shugarts, N. M., 87*
Shukla, P., 398A
Siebriebriennikov, Bogdan, ...
Siebriebriennikov, Bogdan, ...
Silberb, J., 616C
Silva, Malan, 946C*
Silva, N., 251A
Silva-Garcia, C., 1063C
Silver, D., 429B
Silverman, G., 597B
Siman-Tov, I., 982C
Simard, M. J., 660B
Simke, W., 1011B
Simon, F., 870B
Singaravelu, G., 380A
Singh, A., 36*
Singh, J., 1180C*
Singh, M., 83, 644A*, 648B, 650A
Singh, R., 376C
Singh, Ramya, 382C*
Singh, S., 541C
Singh, Varsha, 1174C*
Singhvi, A., 1209B
Singhvi, Aakanksha, 1209B
Singhson, A., 292C, 380A
Singh, A., 301C
Singh, D. B., 1084C*
Sinks, Alexander, 582B
Sinks, A. Lucia, 569A*
Sinnen, Brooke L., 114
Sirinakis, George, 533A
Sivaramakrishnan, Priya, 347A*
Skelly, Lauren E., 417B*
Skelton, R., 976C
Slack, Frank, 339B
Slofinski, Samuel, 457C*
Smart, J., 328C
Sneath, Alexander, 569A*
Smith, Cheryl L., 12
Smith, H. E., 257A
Smith, I. T., 657B
Smith, Karen, 25
Smith, S., 760C
Smolikova, S., 260A
Sohn, Heehwa G., 1033C
Son, S., 1115A*
Son, Sangwoon, 787C
Sonenberg, N., 662A
Song, M., 227A*
Song, Mi Hye, 225B
Son, P., 1092B*, 1170B
Sonowal, R., 114C*
Sontheimer, E. J., 579B
Sorensen, Erik, 391C*
Sorokin, Elena, 391C
Soto, Jose, 1149B
Soto, L., 806A
Soto, M. C., 412C*
Sotomayer, J., 1142A
Soueid, H., 256C
Soukas, A. A., 1178A
Soulavie, F., 355C*
Sowa, J., 134*
Spang, A., 156
Sparacio, A. P., 129*
Spatola, B. N., 1096C*
Spensley, M., 603B,
Spina, J., 1143B, 1173B
Srajyko, M., 268C
Srinivasan, Jagan, 676C
Stainier, D., 568C
Stainier, William, 518A
Stajich, J., 463C
Stancu, P., 448C
St. Ange, J., 608A, 1098B
St. Ange, Jonathan, 916C*
Stillion, J., 297B*, 300B
Storney, Julian, 1014B
Starr, D. A., 237B*, 238C*
Stastna, Jana, 1035B*
St. Croix, C., 1152B
Steber, H., 605A*, 1138C
Steber, Hannah, 607C
Stec, N., 146
Steele, L. M., 209A*
Steenberge, L., 1059B
Stefanakis, N., 786B*
Stefinko, M., 449A
Stein, L., 508C
Stein, Wolfgang, 1209B
Steinbaugh, M., 30
Steiner, Florian, 516B*
Solis, G., 1134B
Somasiri, P., 1181A*
Somusandaram, L., 134
Somia, Nirali, 431A
Sommer, Ralf, 201, 802C,
Sommer, R. J., 470A
Son, H., 1032B
Son, Heehwa G., 1033C
Son, S., 1115A*
Son, Sangwoon, 787C
Sonnenberg, N., 662A
Song, M., 227A*
Song, Mi Hye, 225B
Soni, P., 1092B*, 1170B
Sonowal, R., 114C*
Sontheimer, E. J., 579B
Sorensen, Erik, 391C*
Sorokin, Elena, 391C
Soto, Jose, 1149B
Soto, L., 806A
Soto, M. C., 412C*
Sotomayer, J., 1142A
Soueid, H., 256C
Soukas, A. A., 1178A
Soulavie, F., 355C*
Sowa, J., 134*
Spang, A., 156
Sparacio, A. P., 129*
Spatola, B. N., 1096C*
Spensley, M., 603B,
St. Ange, J., 608A, 1098B
St. Ange, Jonathan, 916C*
Stanley, J., 297B*, 300B
Stanley, Julian, 1014B
Starr, D. A., 237B*, 238C*
Stastna, Jana, 1035B*
St. Croix, C., 1152B
Steber, H., 605A*, 1138C
Steber, Hannah, 607C
Stec, N., 146
Steele, L. M., 209A*
Steenberge, L., 1059B
Stefanakis, N., 786B*
Stefinko, M., 449A
Stein, L., 508C
Stein, Wolfgang, 1209B
Steinbaugh, M., 30
Steiner, Florian, 516B*

SPEAKER AND AUTHOR INDEX

...1153C, 1213C
Thomas, Linitha, 383A
Thomas, T.,.............. 863A
Thome, M.,........ 989A
Thompson, J. W.,......223C*
Thompson, M.,........ 573B*
Thompson, Morgan, 145
Thondamal, Manjunatha, 1088A
Tirera, Fouley,718C*
Tirera, M.,............. 480B,
................................. 395A
Toch, Katarzyna, 591B*,
To, A., 1134B
Tjahjono, E., 548A*
................................. 940C*
Toke, I. A., 200*
Toker, I. A., 200*
Tohsato, Y.,505C*
................................. 395A
Toraason, Erik, 15*
Toraason, E., 264B
Torkashvand, M., ... 737A*
Torkashvand, M., 785B*
Torres Cleuren, Y., 350A
Torres Clueren, Y., .. 480B,
................................. 527A
Torres Clueren, Y., 480B,
................................. 527A
Tortora, P., 1220A
Tossing, Gilles, 883C
Toth, M., 835C
Touroutine, D., 615B*,
................................. 956A
Touroutine, Denis, ... 741B
Towbin, B., 609B
Towlson, E. K., 980A*
Toyama, Y., 228B
Toyoda, A., 106, 677A,
................................. 701A
Toyoshima, Y., 698A
Toyoshima, Yu,........ 720B
Trabelcy, Benjamin,60
Traets, J. J. H., 112*
Traikov, S., 161
Tran, A., 1168C
Tran, Cindy,...........584A*
Tran, Nhah, 402B
Travers, A. E.,78
Trent, Christian,459B
Trimmer, K., 852B
Trivedi, M., 824A*
Trivedi, S., 1002B*
Troemel, E., 61, 134, 613C,
................................. 1071B
Trombley, J., 552B*
Tronnes, K., 76
Truong, L., 538C*
Truong, Lisa, 531B
Tsai, H., 628C*
Tsai, J., 463C
Tsai, J., 908A
Tse, L.-Y. L., 693B
Tse, Victoria, 718C
Tsuj, B. V., 147
Tsutui, T., 49
Tsuge, A., 866A
Tsujii, Toshiho, 947A
Tsukada, Y., 109, 832C*
Tsukada, Yuki, 691C, 929A
Tu, S., 559C
Tu, Shikui, 85
Tucker, Chandra L., 114
Tucker, R. A., 899A
Turek, M., 985C
Turner, C., 1094A*
Turniansky, R., 14
Turpin, C., 211C*
Tursun, B., 77, 150, 330B,
........ 349C, 511C, 522B, 546B
Tursun, Baris, 329A
Twaddle, A., 1218B

V

VACHON, C., 45*
Vadset, T. A., 889C
Vaid, Samir, 379C
Valdez, V., 1168C
Vallejos, Catalina, 93
Vallier, L. G., 443A
Valperga, G., 111*
Vanapalli, S., 187, 835C,
................................. 1049A, 1170B, 1219C
Vanapalli, S. A., 1092B,
................................. 1167B, 1185B, 1200B
Vanapalli, Siva, 406C
Van Buskirk, C. L., 716A*
Vanden Broek, K., 374A*
Van den Heuvel, S., .. 535C
Vanden Heuvel, Sander,
................................. 340C
Van der Auwer, P., 934C
Van der Auwer, Petrus, ..
................................. 845A
van der Burght, S., 112
van der Burght, Servaas, ..
................................. 189*
Van DerGaag, T., 1224B
VanDerGaag, V., 1225C
van der Linden,
Alexander, 132, 746A,
................................. 748C, 755A
van der Veen, C., 418B*
van der Zwaag, J., 68
Van De Walle, P., 424C*
Van de Walle, P., 424C*
Van De Walle, P., 424C*
Vandewyer, E., 934C
Van Dewyler, Elke, 984B
van Gilst, Marc, 1015C
Van Gilst, M. R., 1104B
VanHoven, M., 10, 972B,
................................. 974A, 982C
van Kilsdonk, J., 1226A
van Leen, Eric, 168
Van Raamsdonk, J. M.,
SPEAKER AND AUTHOR INDEX

Wei, H. 195*
Wei, K. 42, 942B*
Weinkove, D. 1112A*
Wei, K. 42, 942B*
Weinstein, R. 580C
Weintraub, G. 200
Weiser, N. 632A*
Weiser, N. E. 651B
Wen, Q., 767A, 931C, 948B
Wenda, Joanna 516B
Weng, Z. 559C
Weng, Zhiping 85
Wenda, Joanna 516B
Weng, Z. 559C
Wenger, Zhiping 85
Werner, S. 601C
Werner, Michael 201*
Weng, Zhiping 85
Wesseling, Matthijs 733C*
Wheeler, Jeanna 872A
Wexler, L. R. 736C*
Wheeler, J. M. 873B*, 877C
Whitener, J. 737A
White, R. 1218B
Whittle, J. 597B
Wibisono, P. 1195C*
Wickens, J. 192
Wickens, M. 369B
Wightman, B. , 429B, 430C
Wightman, Bruce 96*
Wilce, J. 559C
Williams, Gary, 503A, 587A
Williams, J. 549B
Williams, Shoshana 1074B
Willicott, K. 898C*
Willis, A. 1194B
Willis, A. R. 64*
Willis, John 496C
Wilmoth, T. Bruce., 254A*
Wilson, N. E. 690B
Wilwayco, K. 756B
Wimberly, Keon 1110B*
Winkenbach, LP 561B
Wirak, G. S. 969B*
Witkowski, J. 1113B*
Witte, H. 470A
Wittig, K. 762B
Witting, M. 1136A
Witus, S. 325C
Wittvliet, D. 9*, 960B
Woglar, A. 267B
Woglar, Alex 265C
Wohland, T. 228B
Wohlschlegel, J. 81
Wohlschlegel, J. A., .. 662A
Wojtovich, Andrew 1131B
Wolfram, T. 330B
Wolstenholme, A. J., 690B*
Wong, G. 665A
Wong, Garry, 500A*, 854A
Wong, Grace 855B
Wong, J. 47
Wong, L. 1029B*
Wong, M. 178*, 879B*
Wong, Ming-Kin 404A
Wong, S.Wan-Rong, 586C*
Wong, T. 453B
Wong, W. 1119B
Wood, M. 358C
Woodhouse, R. 529C*
Woodhouse, Rachel, 530A
WoodBase Consortium, 532C
X
Xia, Shili 825B
Xiao, Z. 126, 775C
Xie, B. 547C
Xie, Dongying 141
Xie, L. 32
Xie, Xinlin1163A, 1165C
Xie, Y. 931C
Xin, Q. 767A, 931C
Xiong, R. 780B*, 781C
Xiong, Y. 246B
Xu, C. 898C
Xu, J. .. 98, 1122B*, 1166A
Xu, K. 258B
Xu, Laiing 763C
Xu, S. 826C
Xu, Suhong 909B
Xu, T. .. 702B, 703C, 767A
Xu, Y. Z. S. 686A
Xue, Eddie 1077B
Xue, Feng 133, 323A
Xue, J. 1069C, 1080B
Xue, Jian 1062B
Xue, Y. 702B, 703C
Y
Yadav, D. 1139A*
Yadegari, Z. 827A*
Yamamoto, Keith 582B
Yamaya, K. 267B*
Yan, Dong 173*
Yan, H. 178
Yan, Jun Yi 1015C
Yan, Yonghong 543B
Yanagi, K. S. 908A*
Yanase, S. 988C*
Yang, B. 638A*
Yang, C. 190, 463C
Yang, Claire 107
Yang, H. 1124A
Yang, Heeseung 787C
Yang, J. 448C*
Yang, Q. 136*
Yang, S. 958C
Yang, W. 65
Yang, Wentao 1197B
Yang, X. 702B, 703C
Yang, Xin 1083B
Yang, Xinyi 984B
Yang, Y. 1090C*
Yang, Yang 500A
Yang, Yichong, 1163A, 1165C
Yang, Yuchen 577C*
Yang, Yuqi 402B
Yang, Zhe 413A*, 763C*
Yankner, B. A. 34
Yanowitz, J. 278A, 287A
Yanowitz, Judith 1108C
Yao, B. 705B
Yarychikyvka, O., 208C*
SPEAKER AND AUTHOR INDEX

Yu, Yan, 1145A
Yu, Yanxun, 679C
Yu, Z., 283C, 702B, 703C
Yura, Tom, 282B
Yuval, O., 754C*
Yzeraf, Edlira, 122

Z
Zacharias, A. L., 566A
Zacharias, Amanda L., 435B*
Zadeh, Adam, 326A*
Zafra Martinez, Isabella, ...
Zaghet, N., 520C*
Zahreddine Fahs, H., 1218B*
Zaidel-Bar, Ronen, 240B
Zampi, G., 858B
Zang, Xiao, 997C
Zarate Potes, A., 65*
Zárate-Potes, Alejandra, ...

Zellag Mohamed, Rédia, ...
Zemelman, B., 852B
Zheng, Chaogu, 169*
Zheng, Shanqing, 262C
Zheng, Sherry, 346C
Zheng, Y., 767A, 826C*, 931C
Zhang, Qian, 101
Zhang, S., 898C
Zhang, W., 317A, 414B
Zhang, Wan, 224A
Zhang, Winnie, 188
Zhang, X., 686A, ...
Zhang, Xiaojuan, 528B
Zhang, Xichen, 236A
Zhang, Y., 702B, 703C,
Zhang, Y., 594B
Zhang, Y., 1065B
Zhang, Yun, 583C, 1088A
Zhao, D., 473A
Zhao, Guoyan, 456B
Zhao, Jian, 41
Zhao, P., 846B, 852B*
Zhao, W., 1149B
Zhao, W. Y., 64
Zhao, Y., 478C
Zhao, Z., 178, 222B
Zhao, Zhiling, 3
Zhao, Zhongying, 141*

Zhao, Guoyan, 456B
Zhao, Jian, 41
Zhao, P., 846B, 852B*
Zhao, W., 1149B
Zhao, W. Y., 64
Zhao, Y., 478C
Zhao, Z., 178, 222B
Zhao, Zhiling, 3
Zhao, Zhongying, 141*

Zhen, Mei, 75, 964C,

Zheng, Chaogu, 169*
Zheng, Shanqing, 262C
Zheng, Sherry, 346C
Zheng, Y., 767A, 826C*, 931C
Zhang, Qian, 101
Zhang, S., 898C
Zhang, W., 317A, 414B
Zhang, Wan, 224A
Zhang, Winnie, 188
Zhang, X., 686A, ...
Zhang, Xiaojuan, 528B
Zhang, Xichen, 236A
Zhang, Y., 702B, 703C,
Zhang, Y., 594B
Zhang, Y., 1065B
Zhang, Yun, 583C, 1088A
Zhao, D., 473A
Zhao, Guoyan, 456B
Zhao, Jian, 41
Zhao, P., 846B, 852B*
Zhao, W., 1149B
Zhao, W. Y., 64
Zhao, Y., 478C
Zhao, Z., 178, 222B
Zhao, Zhiling, 3
Zhao, Zhongying, 141*

Zhen, Mei, 75, 964C,

Zhang, Qian, 101
Zhang, S., 898C
Zhang, W., 317A, 414B
Zhang, Wan, 224A
Zhang, Winnie, 188
Zhang, X., 686A, ...
Zhang, Xiaojuan, 528B
Zhang, Xichen, 236A
Zhang, Y., 702B, 703C,
Zhang, Y., 594B
Zhang, Y., 1065B
Zhang, Yun, 583C, 1088A
Zhao, D., 473A
Zhao, Guoyan, 456B
Zhao, Jian, 41
Zhao, P., 846B, 852B*
Zhao, W., 1149B
Zhao, W. Y., 64
Zhao, Y., 478C
Zhao, Z., 178, 222B
Zhao, Zhiling, 3
Zhao, Zhongying, 141*

Zhen, Mei, 75, 964C,

Zhang, Qian, 101
Zhang, S., 898C
Zhang, W., 317A, 414B
Zhang, Wan, 224A
Zhang, Winnie, 188
Zhang, X., 686A, ...
Zhang, Xiaojuan, 528B
Zhang, Xichen, 236A
Zhang, Y., 702B, 703C,
Zhang, Y., 594B
Zhang, Y., 1065B
Zhang, Yun, 583C, 1088A
Zhao, D., 473A
Zhao, Guoyan, 456B
Zhao, Jian, 41
Zhao, P., 846B, 852B*
Zhao, W., 1149B
Zhao, W. Y., 64
Zhao, Y., 478C
Zhao, Z., 178, 222B
Zhao, Zhiling, 3
Zhao, Zhongying, 141*

Zhen, Mei, 75, 964C,

Zhang, Qian, 101
Zhang, S., 898C
Zhang, W., 317A, 414B
Zhang, Wan, 224A
Zhang, Winnie, 188
Zhang, X., 686A, ...
Zhang, Xiaojuan, 528B
Zhang, Xichen, 236A
Zhang, Y., 702B, 703C,
Zhang, Y., 594B
Zhang, Y., 1065B
Zhang, Yun, 583C, 1088A
Zhao, D., 473A
Zhao, Guoyan, 456B
Zhao, Jian, 41
Zhao, P., 846B, 852B*
Zhao, W., 1149B
Zhao, W. Y., 64
Zhao, Y., 478C
Zhao, Z., 178, 222B
Zhao, Zhiling, 3
Zhao, Zhongying, 141*

Zhe, 113
Microfluidic Technology: *vivoChip™* is the only platform that can immobilize multiple *C. elegans* in parallel from multiple populations (up to 96 populations) enabling high-resolution imaging and multi-dimensional phenotypic analysis at high-throughput.

Key Features:
✓ Simple to setup and operate (<1hr)
✓ Immobilize 40 animals in parallel
✓ Chips available for L4 – D5 stages
✓ Compatible to all microscopes
✓ Quantitative analysis in few minutes
✓ No microfluidics experience required
✓ **NEW L1 – L3 imaging chip**
 (Visit us at booth # 203 for details)
Mutant screen results gathering dust in your lab notebook?
WGS datasets languishing on your hard drive?
New software tools going unshared?

We’ve got an article format for that.

Mutant Screen Reports
Describe results of mutant screens

Genome Reports
Describe whole genome sequence (WGS) data of organisms and/or strains

Software & Data Resources
Describe novel software for genetic data analyses and database resources

g3journal.org/content/article-types
Why publish in GENETICS & G3?

Streamlined Submission, Fast Decisions

Tired of reformatting manuscripts? We welcome initial submissions in any format and impose no limits on length, figures, or supplemental information. Has your manuscript been reviewed at another journal? Let us know and provide a response to reviewers; editors can use this as part of the decision-making process. We can even fast-track handling in some circumstances.

Time to first decision? About a month.

Around a week after initial submission, the editors will let you know whether the manuscript will be sent for review. For reviewed manuscripts, the editors reach a decision in an average of 35 days from your initial submission. More than 90% of revised papers are accepted without an additional round of reviews.

High-Quality Review & Peer Editors

Ever struggled with confusing reviews or an unclear decision letter that doesn’t give you a clue about where to start your revision? Our journals are known for their insightful and helpful review processes.

At least two editors consult on every decision.

Your manuscripts will be handled by practicing scientists—like you—who understand from experience what it takes to tell a significant story, to create a useful method or resource, or to extract meaning from large datasets. Rather than simply tallying reviewer “votes,” your editor synthesizes the reviews into a clear decision letter that offers guidance and explains rationales for all decisions, helping to improve your paper’s impact. Still have questions? Contact the editorial office or the editor. Speak with a real person who’ll be up front with you.

Receive consolidated, clear feedback from your editor.

Decision letter offers specific guidance for revisions.
Sister Journals, One-Touch Transfer

If you submit a manuscript to GENETICS that reports high-quality, useful findings but lacks the broad appeal, significance, or novelty of a GENETICS article, you may be offered a transfer to G3. This seamless process can guarantee review at G3 or allow G3 editors to use the GENETICS reviews to offer a decision within days.

After Acceptance

Within days, accepted manuscripts are published Early Online, indexed in PubMed, and available to colleagues. You may be selected for highlights in GENETICS, a featured article in G3, cover art, press releases, promotion on GSA's Genes to Genomes blog, social media, e-news, and other outreach. We enhance discovery and use of your research, helping increase its impact.

Community Support

Our journals are published by the Genetics Society of America. GSA is run by and for scientists to advocate for us, advocate for our field, bring us together, and foster our work.

GENETICS and G3 are committed to integrating with community resources. We’ve long supported the use of preprints; in 2014 we partnered with Cold Spring Harbor Laboratory to enable seamless deposits of manuscripts from our submission systems to bioRxiv, and vice versa. Articles feature links to model organism databases like SGD, FlyBase, WormBase, and FungiDB. Through Overleaf, we provide custom templates for authors who use LaTeX, saving them time at submission. Our partnership with Publons helps you get credit for the reviewing you do at the GSA Journals.

Commitment to Data Availability

Our data policy, instituted in 2010, requires all primary data and source code associated with the paper’s findings to be publicly available. Besides providing everything needed for replication, this policy allows your research to have the greatest possible impact and ensures your findings will be used for years to come. We’ve partnered with the data repository figshare to ensure you get credit for all of your work; your supplemental material and data files now get a DOI and are permanently linked to your manuscript.

Not sure if your work is a good fit for GENETICS? We welcome pre-submission inquiries!
GENETICS
Peer Review Training Program

Receive mentoring in scientific reviewing from members of the GENETICS Editorial Board. Participants receive training in preparing manuscript reviews and personalized feedback from journal editors.

• Gain practical experience
• Understand reviewer & editor expectations
• Practice evaluating research
• Learn to give constructive feedback
• Demonstrate professional skills
• Learn about publishing practices

GSA members within ten years of receiving their PhD degree are eligible to apply, including senior graduate students and early career faculty.

Learn more:
www.genetics-gsa.org/careers/training_program.shtml
The PALM Network Grant

up to $2000 per Fellow / $500 mentor stipend
$1000 meeting travel each for Fellow and mentor

Cultivate an active learning practice in lecture classes in which undergraduate students are engaged in their own learning

PALM Fellows will:

- Gain mentorship from leaders in undergraduate biology teaching and learning
- Learn best practices in teaching and in assessing active learning
- Create an original teaching module that engages students in active learning
- Join a community of scientists dedicated to active teaching and learning, and share ideas and support
- Participate in Fellow-mentor journal clubs, meetings, and networking opportunities
- Obtain invaluable career development for faculty careers
- Be part of a network of scientific societies dedicated to supporting scientists in teaching and learning careers

Apply to be a PALM Fellow

Establish mentor-Fellow relationship
Submit PALM proposal
Fellow submits pre-mentoring teaching video
Fellow works with, visits, observes mentor
Fellow records post-mentoring teaching video
Present to PALM Network

For more information, including eligibility requirements, application details, and to learn about how to be paired with a mentor if you don’t have one in mind, visit palmnetwork.org

2019 Application Deadlines: January 30, April 30, July 30, and October 30

PALM is funded by NSF Research Coordination Network in Undergraduate Biology Education grant #1624200.
The basic idea is simple: combine the strength of the experimental system with the genetic diversity of the target population. Rather than choose two inbred lines or two phenotypically divergent individuals as founders of a genetic reference panel, choose eight—or twenty-five. We refer to this broad set of genetic reference panels as multiparental populations. This collection fosters discussion about the genetic inferences made from MPPs, including the best ways to analyze the data and how to extend these inferences to natural populations.

Genomic Prediction as a field was launched by a landmark GENETICS paper authored by Meuwissen, Hayes, and Goddard in 2001. The premise was to use genotypic information to predict breeding values for particular phenotypes without specific knowledge of the individual genes contributing to that trait. These methodologies have since been used in human genetics to predict disease risk and other phenotypic outcomes. The goal of the collection is to stimulate discussion about the different techniques used in the community and to examine data that would further the discussions.

These cross-journal, ongoing series feature methodologies, datasets, and insights on exciting topics in complex trait research. Both collections accept submissions on a rolling basis, so submit your paper today.

genetics.org/content/multiparental_populations
genetics.org/content/genomic-prediction
Support Your Field
Society-owned, not-for-profit journals are edited and managed by practicing scientists. By reinvesting in the community, the members of the SSPA are committed to delivering important discoveries worldwide.

byscientistsforscience.org
TAGC 2020 will feature a mix of topic-driven and community sessions, plus exciting industry, professional development, and advocacy programming.

GAYLORD NATIONAL RESORT & CONVENTION CENTER
METRO WASHINGTON, DC | APRIL 22–26, 2020
THURSDAY, JUNE 20
7:00 p.m. - 7:15 p.m. Conference Welcome Royce Hall
7:15 p.m. - 10:00 p.m. Plenary Session 1 Royce Hall
10:00 p.m. - 11:00 p.m. Opening Mixer Royce Quad

FRIDAY, JUNE 21
8:30 a.m. - 11:30 a.m. Concurrent Sessions I Germline: Meiosis and Development Aging and Longevity Neurobiology: Synapses and Circuits Pathogenesis, Ecology, and Evolution Grand Horizon Ballroom DeNeve Auditorium Palisades Ballroom Northwest Auditorium
1:00 p.m. - 2:30 p.m. Workshops I CRISPR Microfluidics and Customized Experimental Platforms Glia: Exciting Discoveries and New Approaches Career Success Strategies Palisades Ballroom DeNeve Auditorium Northwest Auditorium Grand Horizon Ballroom
3:00 p.m. – 6:00 p.m. Plenary Session 2 Royce Hall
7:30 p.m. - 10:30 p.m. Poster Session 1/Exhibits/Art Show Pauley Pavilion

SATURDAY, JUNE 22
7:30 a.m. - 8:30 a.m. microPublication Biology Workshop DeNeve Private Dining Room
8:30 a.m. - 11:30 a.m. Concurrent Sessions II RNA Interference and Noncoding RNAs Stress Neurobiology: Sensory Responses and Novel Methods Development: Cell Signaling, Fate, and Patterning Northwest Auditorium DeNeve Auditorium Palisades Ballroom Grand Horizon Ballroom
1:00 p.m. - 2:30 p.m. Workshops II Small Things Considered: the Microbiome Wormbase 2019 Real-Time Biochemistry and Biophysics Assay Development for Human Disease Models in C. elegans Food on the Mind: Sensory Detection of Food and Integrative Feeding Behaviors GSA Publishing Q&A DeNeve Plaza Room Northwest Auditorium Grand Horizon Ballroom DeNeve Auditorium Covel Study Lounge
3:00 p.m. – 6:00 p.m. Plenary Session 3 and Keynote Address Royce Hall
7:30 p.m. - 10:30 p.m. Poster Session 2/Exhibits/Art Show Pauley Pavilion

SUNDAY, JUNE 23
8:30 a.m. - 11:30 a.m. Concurrent Sessions III Gene Regulation and Genomics Metabolism and Dauer Neuronal Development, Degeneration and Regeneration Cell Biology Grand Horizon Ballroom DeNeve Auditorium Palisades Ballroom Northwest Auditorium
1:00 p.m. - 2:30 p.m. Workshops III Teaching Workshop New Tools for Conditional Expression or Degradation Whole-Brain Imaging Bridging the Physiologic Gap DeNeve Auditorium Palisades Ballroom Grand Horizon Ballroom Northwest Auditorium
3:00 p.m. - 6:00 p.m. Poster Session 3/Exhibits/Art Show Pauley Pavilion
6:00 p.m. - 7:30 p.m. Conference Dinner Wilson Plaza Quad
7:30 p.m. - 8:45 p.m. Awards and Variety Show Royce Hall
8:45 p.m. - 11:30 p.m. Conference Party Wilson Plaza Quad

MONDAY, JUNE 24
9:00 a.m. - 11:53 a.m. Plenary Session 4 Royce Hall